PCI-1742U

16-bit, 1MS/s High-Resolution Multifunction Card

Packing List

Before installation, please make sure that you have received the following:

- PCI-1742U DA&C card
- Driver CD
- · Quick Start User Manual

If anything is missing or damaged, contact your distributor or sales representative immediately.

User Manual

For more detailed information on this product, please refer to the PCI-1742U User Manual on the CD-ROM (PDF format).

CD:\Documents\Hardware Manuals\PCI\PCI-1742U

Declaration of Conformity

FCC Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause interference in which case the user is required to correct interference at his own expense.

CE

This product has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables. This kind of cable is available from Advantech. Please contact your local supplier for ordering information.

Overview

The PCI-1742U is a powerful high-resolution multifunction DAS card with 1MS/s sampling rate and 16-bit resolution, fulfills the needs of most data acquisition applications. PCI-1742U provides 16 single-ended or 8 differential analog input channels, two 16-bit D/A output channels, 16 digital input/output channels, and one 10 MHz 16-bit counter channel.

Notes

For more information on this and other Advantech products, please visit our websites at:

http://www.advantech.com/eAutomation

For technical support and service:

http://www.advantech.com/support/

This startup manual is for PCI-1742U.

Part No. 2003174210

1st Edition

May 2007

Specifications

Analog Input

Analog Input						
Channels	16 single-ended or 8 differential or combi-					
	nation					
Resolution	16-bit					
FIFO Size	1K samp					
Max. Sampling						
Rate	800kS/s					
	250kS/s					
A/D converter	Normal i	mode:	maxim	ium 80	00kS/s	mini-
mode	mum: no)				
	Warp mo	ode: m	aximu	m 1MS	s/s min	imum:
	1kS/s					
Input range	PGA	0.5	1	2	4	8
and	Gain					
PGA Gain List	Unipolar	N/A	0~10	0~5		0~1.25
	Bipolar		±5	±2.5		±0.625
Bandwidth of		0.5	1	2	4	8
PGA	Gain					
		2MHz	2MHz	1MHz	1MHz	800kHz
	width					
Common Mode	±7 V ma	х. (оре	eration	al)		
Voltage						
Protection	±20 V					
Input	100 M/10pF(Off); 100 M/100pF(On)					
Impedance						
Accuracy	DCDNLE: ±1LSB					
	INLE: ±3LSB					
	Offset error: Adjustable to ±2 LSB					
	Gain			2	4	8
	Gain		.02 0.0	0.0	2 0.03	0.04
	error					
	(% F			L		
	ACTHD: -90 dB					
	ENOB: 13.5 bits @ 1MS/s 14.5 bits @					
	< 250KS/s					

Analog Output

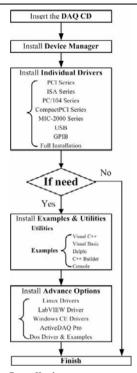
Channels	10		
	2		
Resolution	16-bit		
Throughput	2MS/s max. per channel (FSR)		
		. ,	
O		0 .51/ 0 .401/	
Output	Using	0~+5V, 0~+10 V,	
Range (Inter-	Internal	-5~+5V,-10~+10V	
nal & `	Reference		
External	Using	0~+x V@ +x V (-10 x 10)	
	External	-x~+x V@ +x V (-10 x 10)	
Reference)			
_	Reference		
Accuracy	DC	DNLE: ±1LSB (monotonic)	
		INLE: ±2LSB	
		IINLE: ±2LSB	
		Offset error: Adjustable to ±2 LSB	
		Gain error: Adjustable to ±2 LSB	
		•	
Dynamic	Settling	0.5µs (to 4 LSB of FSR)	
Performance	Time		
	Slew Rate	40 V/us	
		10 17μ0	
Driving	±2mA		
Capability			
Output	2.5 ohm		
Impedance			
Tempco	Gain: 30 p	nm/°C	
	Offset: 15		
	Oliset: 15	1V/ C	

Specifications

Digital Input /Output

Input channels	16	
Output channels	16	
Number of ports	2	
Input Voltage	Low	0.8 V max.
	High	2.0 V min.
Output Voltage	Low	0.5 V max.@+24 mA (sink)
	High	2.4 V min.@-15 mA (source)
Pull up resistor	10k	

Counter/Timer


Channels	1 (82C54)
Resolution	16-bit
Clock source	10MHz max.
Clock Tempco	50 ppm/°C

General

I/O Connector Type	68-pin SCSI-II female		
Dimensions	175 × 100 mm (6.9" × 3.9")		
Power Consumption	Typical	+5 V @ 850 mA +12 V @ 600 mA	
	Max.	+5 V @ 1 A +12 V @ 700m A	
Temperature	Operation	0~+60°C (32~158°F) (refer to <i>IEC 68-2-1,2)</i>	
	Storage	-20~+85°C (-4~185°F)	
Relative Humidity	5 ~ 95% RH non-condensing (refer to <i>IEC 68-2-3</i>)		
Certification	CE certified		

Installation

Software Installation

Hardware Installation

- 1. Turn off your computer and unplug the power cord and cables. Turn off your computer before installing or removing any components.
- 2. Remove the cover of your computer.
- Remove the slot cover on the back panel of your computer.
- Touch the metal part on the surface of your computer to neutralize any static electricity that might be in your body.
- Insert the PCI-1742U card into a PCI slot. Hold the card only by its edges and carefully align it with the slot. Insert the card firmly into place. Use of excessive force must be avoided; or the card might be damaged.
- 6. Fasten the bracket of the PCI card on the back panel rail of the computer with screws.
- Connect appropriate accessories (68-pin cable, wiring terminals, etc. if necessary) to the PCI card.
- Replace the cover of your computer chassis. Re-connect the cables you removed in step 2.
- 9. Plug in the power cord and turn on the computer.

Pin Assignment

				ı
	AI0	68	 34	AI1
	AI2	67	33	AI3
	AI4	66	32	AI5
	AI6	65	31	AI7
	AI8	64	30	AI9
	AI10	63	29	AI11
	AI12	62	28	AI13
	AI14	61	27	AI15
A	GND.	60	26	AGNI
	AI16	59	25	AI17
	AI18	58	24	AI19
	AI20	57	23	AI21
	AI22	56	22	AI23
	AI24	55	21	AI25
	AI26	54	20	AI27
	AI28	53	19	AI29
	AI30	52	18	AI31
	AI32	51	17	AI33
	AI34	50	16	AI35
	AI36	49	15	AI37
	AI38	48	14	AI39
	AI40	47	13	AI41
	AI42	46	12	AI43
	AI44	45	11	AI45
	AI46	44	10	AI47
A	.GND	43	9	AGND
	AI48	42	8	AI49
	AI50	41	7	AI51
	AI52	40	6	AI53
	AI54	39	5	AI55
	AI56	38	4	A157
	AI58	37	3	AI59
	AI60	36	2	AI61
	AI62	35	1	AI63
				1

Signal Name	Reference	Direction	Description
AI<015>	AIGND	Input	Analog Input Channels 0
			through 15. Each channel
			pair, Al <i, i+1=""> (i = 0, 2,</i,>
			414), can be configured
			as either two single-ended
			inputs or one differential input.
AIGND			Analog Input Ground. The
AIGIND	-	-	three ground references
			(AIGND, AOGND, and
			DGND) are connected
			together.
AO0_REF	AOGND	Input	Analog Output Channel 0/
AO1_REF			1 External Reference.
AO0_OUT	AOGND	Output	Analog Output Channels
AO1_OUT			0/1
AOGND	-	-	Analog Output Ground.
			The analog output volt-
			ages are referenced to
			these nodes. The three
			ground references
			(AIGND, AOGND, and DGND) are connected
			together.
DI<015>	DGND	Input	Digital Input channels.
DO<015>	DGND	Output	Digital Output channels.
DGND	DGND	Output	Digital Ground. This pin
DGND	-	-	supplies the reference for
			the digital channels at the
			I/O connector as well as
			the +5VDC supply. The
			three ground references
			(AIGND, AOGND, and
			DGND) are connected
			together.
CNT0_CLK	DGND	Input	Counter 0 Clock Input. The
			clock input of counter 0
			can be either external or
			internal, as set by soft- ware.
CNT0_OUT	DGND	Output	Counter 0 Output.
CNT0_GATE	DGND	Input	Counter 0 Gate Control.
PACER OUT	DGND	Output	Pacer Clock Output. This
I ACEN_OUT	DGND	Output	pin pulses once for each
			pacer clock when turned
			on. If A/D conversion is in
			the pacer trigger mode,
			users can use this signal
			as a synchronous signal
			for other applications.
TRG_GATE	DGND	Input	A/D External Trigger Gate.
			When TRG _GATE is con-
			nected to DGND, it will dis-
			able the external trigger
EXT TRG	DGND	Innet	signal to input. A/D External Trigger. This
ENI_IKG	שמאטע	Input	pin is external trigger. This
			nal input for the A/D con-
			version. A low-to-high
			edge triggers A/D conver-
			sion to start.
+12V	DGND	Output	+12 VDC Source.
+5V	DGND	Output	+5 VDC Source.
			l .

Signal Connections

Analog Input Connections

Single-ended Channel Connections

The single-ended input configuration has only one signal wire for each channel, and the measured voltage (Vm) is the voltage of the wire as referenced against the common ground.

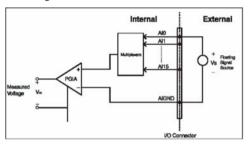


Figure 1: Single-ended Channel Connections

Differential Channel Connections

The differential input channels operate with two signal wires for each channel, and the voltage difference between both signal wires is measured. On PCI-1742U, when all channels are configured to differential input, up to 8 analog channels are available.

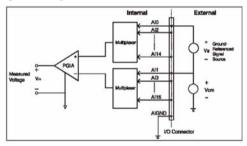


Figure 2: Differential Connection - Ground Signalt

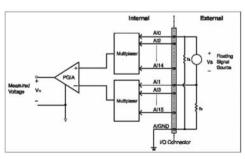


Figure 3: Differential Connection - Floating Signal

Analog Output Connections

The PCI-1742U provides two D/A output channels, **AO0** and **AO1**. You may use the PCI-1742U internally-provided precision -5V (-10V) reference to generate 0 to +5 V (+10 V) D/A output range. You may also create a D/A output range through the external reference AO0_REF. The external reference input range is +/-10 V. For example, connecting with an external reference of -7 V will generate 0 ~ +7 V D/A output.

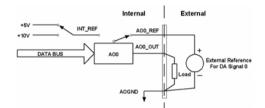


Figure 4: Analog Output Connections

Trigger Source Connections

Internal Pacer Trigger Connection

PCI-1742U includes one 82C54 compatible programmable Timer/Counter chip which provides three 16-bit counters connected to a 10 MHz clock, each designated specifically as Counter 0, Counter 1 and Counter 2. Counter 0 is a counter which counts events from an input channel or outputting pulse. Counter 1 and Counter 2 are cascaded to create a 32-bit timer for pacer triggering. A low-to-high edge from the Counter 2 output (PACER_OUT) will trigger an A/D conversion on the PCI-1742U. At the same time, you can also use this signal as a synchronous signal for other applications.

External Trigger Source Connection

In addition to pacer triggering, the PCI-1742U also allows external triggering for A/D conversions. A low-to-high edge coming from **EXT_TRG** will trigger an A/D conversion on the PCI-1742U. When **DGND** is connected to **TRG_GATE**, the external trigger function is thereby disabled.