

NEXCOM International

VTC 3300, ICEB 3300, ICES 101, NAK 3300

User Manual

NEXCOM International
Published July 2007

www.nexcom.com

CONTENTS

Preface

Copyright Notice.....	v
Acknowledgements	v
Declaration of Conformity.....	vi
RoHS Compliance	vi
Installation Recommendations.....	vii

Warranty and RMA

NEXCOM Warranty Period	viii
NEXCOM Return Merchandise Authorization (RMA).....	viii
Global Service Contact Information.....	ix

Chapter 1: Product Introduction

ICES 101 ETX Computing Module.....	1
ICEB 3300 Carrier Board	1
VTC 3300 Series (C65, 373, SKT).....	1
VTC 3300 Fanless System.....	1
VTC 3200.....	1
VTC 3220.....	2
Ordering Information	2
VTC Series Ordering Information.....	3
ICES Series Ordering Information	4
Optional Accessories Ordering Information	4

Chapter 2: ICES 101 ETX Module Reference

ICES 101 Function Block Diagram	5
ICES 101 Specifications	6
Watchdog Timer Programming	7
P.S. Common Library.....	8
ICES 101 Board Layout.....	9
ICES 101 Board Dimensions	9
IRQ Assignments.....	10
PCI Device Interrupt and BUS Assignments.....	10
JP1: ETX Connector (X1)~PCI BUS, Audio Out, USB	11
JP2: ETX Connector (X2) ~ ISA BUS	12
JP4: ETX (X3)~VGA, CLK, VIDEO, COM, LPT, IR, MS/KB	13
JP3: ETX Connector (X4)~IDE, LAN, I2C, SMBUS, MISC	15

Chapter 3: ICEB 3300 Carrier Board Reference

ICEB 3300 Board Layout	18
ICEB 3300 Jumpers and Switches.....	19
ICEB 3300 Board Dimensions	20
ICEB 3300 Specifications.....	20
ICEB 3300 External Connectors.....	22
GPIO Connector	22
VGA Connector (CON1)	22
LAN Connector (LAN1)	22
USB Connector (USB2).....	23
(USB1)	23

LVDS Power Connector (J1).....	24
External 12V & 5V Power and Fan Sensor (CN12)	24
RS422/485 Connector COM5, COM6 (CN8)	24
Mic and Line Out (CN2).....	24
Line In (CN3)	25
Power Input (CN13).....	25
DC Power input Voltage (CN13)	25
Power On & IDE Active (LED1).....	25
GPIO & GSM LED (LED2).....	25
ICEB 3300 Internal Connectors	26
RS232 Connector COM3 (CN6), COM4 (CN5)	26
IDE Connector (CN7)	26
CompactFlash Connector (IDE1, IDE2).....	27
CPLD Programmer PIN Header (JP5)	28
Microchip Programmer PIN Header (JP7)	28
PIO Connector (CN10)	29
LVDS Connector + USB0 (CN9)	29
NVRAM Pin Defined (U34)	30
PC-104 Plus Connector (J2A~ISA).....	31
PC-104 Plus Connector (J2B~PCI)	32
Mini PCI (CN1).....	33
PCMCIA (CN11)	33
GPS & GSM Connector (CN4)	34
Reset Button (SW1)	34
GSM Reset Button (SW6).....	34
Power Button (SW5)	34
954 IDSEL Select (JP3).....	35
CMOS Input Voltage Select (JP4).....	35
DC Input Voltage Select (JP12).....	35
CF (IDE1) Primary Master/Slave Select (JP6).....	35
CF (IDE2) Primary Master/Slave Select (JP1).....	35
LVDS Power Input Voltage Select (JP2)	35

LED I/O Port Address & Data	35
On & Off Delay Select (SW5).....	36
RS-422/485 Select (SW4)	38

Chapter 4: VTC 3300 Reference

VTC 3300 Package Contents.....	39
VTC 3300 Hardware Specifications.....	39
VTC 3300 Power Consumption.....	42
NICE3300 Power Design Feature.....	42
Power Ignition Control.....	42
Power On/Off Delay Setting	42
VTC 3300/3220 Dimensions.....	43
VTC 3300 Front and Back Layout	44
Installing Modules.....	45
Removing the Cover	45
Installing the Hard Disk	46
Installing the Internal CF Card.....	50
Installing the Mini PCI Module	51
Replacing the Cover	52
Removing the Heat Sink	53
Installing the ICES 101 Module	55
Installing SODIMM.....	56
Replacing the Heat Sink	57

Chapter 5: NAK 3300 Module Reference

NAK 3300 Package Contents	58
NAK 3300 Hardware Specifications	58
NAK 3300 Board Dimensions	58
NAK 3300 Front and Back Layout	58
Installing the NAK 3300 Module	58

PREFACE

Thank you for purchasing NEXCOM's application ready ETX modular solutions that are comprised of a choice of two ETX embedded computing modules, two chassis configurations that include custom carrier board, as well as chassis expansion capability when more room is needed.

NEXCOM's high performance, robust and fanless VTC 3200 has an ICES 101 ETX module with an Intel® Celeron® M low power processor and Intel® 852GM chipset. The VTC 3220 has an ETX module with an AMD Geode™ LX800 processor and AMD Geode™ CS5536 chipset. Encased in a self contained and extremely robust cast aluminum chassis, the VTC Series offer flexible I/O expansion (customization support available), few moving parts and a smart design that makes mounting, maintenance and upgrades faster and more efficient. The chassis protects all components well and is extremely vibration resistant.

The four ETX connectors on the ETX module provides various signals to your carrier board that can be designed for different applications. Support includes ISA, PCI, IDE, LPT, VGA, LVDS, serial, USB interfaces and others. ICES 101 provides cost effective versatile functionality and high performance using Intel processors, and is an ideal ETX module for high-end embedded applications. ICES 120 provides cost effective, versatile functionality and is an ideal ETX module for embedded applications.

With integrated graphics and audio support, plus a generous amount of I/O flexibility, these low-power VTC Series target industrial automation applications such as logistics, field controllers, data acquisition, equipment PC, access control and other industrial automation applications such as

embedded system applications for machine automation, and industrial plant and cabinet integration.

Copyright Notice

All rights reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of NEXCOM.

Information provided in this manual is intended to be accurate and reliable. However, the original manufacturer assumes no responsibility for its use, nor for any infringements upon the rights of third parties that may result from such use.

Copyright © 2007, NEXCOM International Co., Ltd.

Acknowledgements

VTC 3300 is a trademark of NEXCOM International Co., Ltd.

Intel and Pentium are trademarks of Intel Corporation. Microsoft Windows® is a registered trademark of Microsoft Corporation. All other product names or trademarks are properties of their respective owners.

Declaration of Conformity

CE

This product has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables. Please contact your local supplier for ordering information.

This product has passed the CE test for environmental specifications. Test conditions for passing included the equipment being operated within an industrial enclosure. In order to protect the product from being damaged by ESD (Electrostatic Discharge) and EMI leakage, we strongly recommend the use of CE-compliant industrial enclosure products.

FCC Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.

These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

RoHS Compliance

NEXCOM RoHS Environmental Policy and Status Update

NEXCOM is a global citizen for building the digital infrastructure. We are committed to providing green products and services, which are compliant with European Union RoHS (Restriction on Use of Hazardous Substance in Electronic Equipment) directive 2002/95/EU, to be your trusted green partner and to protect our environment.

RoHS restricts the use of Lead (Pb) < 0.1% or 1,000ppm, Mercury (Hg) < 0.1% or 1,000ppm, Cadmium (Cd) < 0.01% or 100ppm, Hexavalent Chromium (Cr₆₊) < 0.1% or 1,000ppm, Polybrominated biphenyls (PBB) < 0.1% or 1,000ppm, and Polybrominated diphenyl Ethers (PBDE) < 0.1% or 1,000ppm.

In order to meet the RoHS compliant directives, NEXCOM has established an engineering and manufacturing task force to implement the introduction of green products. The task force will ensure that we follow the standard NEXCOM development procedure and that all the new RoHS components and new manufacturing processes maintain the highest industry quality levels for which NEXCOM are renowned.

The model selection criteria will be based on market demand. Vendors and suppliers will ensure that all designed components will be RoHS compliant.

How to Recognize NEXCOM RoHS Products

For existing products where there are non-RoHS and RoHS versions, the suffix "(LF)" will be added to the compliant product name.

For example, PEAK 7220VL2G RoHS version will become PEAK 7220VL2G(LF).

All new product models launched after January 2006 will be RoHS compli-

ant. They will use the usual NEXCOM naming convention. For example, PEAK 870VL2, NBP14570, EBC 420 etc.

All RoHS compliant model and component manufacturing part numbers will be suffixed "XO". For Example: 73AI064M03XO CF CARD INDUSTRY, 64MB, T: 0-70°C, PQI:AC47-0640-0442, PBFREE71A5500301XO CPU+NB, AMD LX800, 500MHz/128K ,BGU481, AMD:ALXC800EETJ2VD 1E00042001XO EBC420-LX8.

Installation Recommendations

Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.

Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:

- A Philips screwdriver
- A flat-tipped screwdriver
- A grounding strap
- An anti-static pad

Using your fingers can disconnect most of the connections. It is recommended that you do not use needlenose pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.

Handling Precautions

- Always disconnect the unit from the power outlet whenever you are installing or fixing a component inside the chassis.
- If possible, always wear a grounded wrist strap when you are installing or fixing a component inside the chassis. Alternatively, discharge any

static electricity by touching the bare metal chassis of the unit case, or the bare metal body of any other grounded appliance.

- Hold electronic circuit boards by the edges only. Do not touch the components on the board unless it is necessary to do so. Do not flex or stress the circuit board.
- Use the correct screws and do not overly tighten them.
- Keep the original packaging and static-protective bag in case the unit has to be returned.

WARRANTY AND RMA

NEXCOM Warranty Period

NEXCOM manufactures products that are new or equivalent to new in accordance with industry standard. NEXCOM warrants that products will be free from defect in material and workmanship for 24 months beginning on the date of invoice by NEXCOM. HCP series products (Blade Server) which are manufactured by NEXCOM are covered by a three year warranty period.

NEXCOM Return Merchandise Authorization (RMA)

- Customers shall enclose the "NEXCOM RMA Service Form" with the returned packages.
- Customers must collect all the information about the problems encountered and note anything abnormal or, print out any on-screen messages, and describe the problems on the "NEXCOM RMA Service Form" for the RMA number apply process.
- Customers can send back the faulty products with or, without accessories (manuals, cables, etc.) and any unnecessary components from the card, such as CPU and DRAM. If the components were suspected as part of the problems, please note clearly that which components are included. Otherwise, NEXCOM is not responsible for the devices/parts.
- Customers are responsible for the safe packaging of defective products are durable enough to be resistant against further damage and deterioration during transportation. In case of damages occurred during the transportation, the repair is treated as "Out of Warranty."

- Any products returned by NEXCOM to other locations besides the customers' site will bear an extra charge and will be billed to the customer.

Repair Service Charges for Out-of-Warranty Products

NEXCOM will charge for out of warranty products in two categories, one is basic diagnostic fee and another is component (product) fee.

System Level

- Component fee: NEXCOM will only charge for main components, such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistor, capacitor.
- Items will be replaced with NEXCOM products if the original one is not able to be repaired. Ex: motherboard, power supply, etc.
- Replaced with 3rd party products if needed.
- If RMA goods cannot be repaired, NEXCOM will return it to customer without any charge.

Board Level

- Component fee: NEXCOM will only charge for main components, such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistors, capacitors.
- If RMA goods can not be repaired, NEXCOM will return it to customer without any charge.

Global Service Contact Information

Headquarters

NEXCOM International Co, Ltd.
18F, No. 716, Chung-Cheng Road
Chung-Ho City, Taipei County, 235
Taiwan, R.O.C.
Tel: 886-2-8228-0606
Fax: 886-2-8228-0501
Web: www.nexcom.com.tw
Email: sales@nexcom.com.tw

USA

NEXCOM USA
3758 Spinnaker Court
Fremont, CA 94538 USA
Tel: 1-510-656-2248
Fax: 1-510-656-2158
Web: www.nexcom.com
Email: sales@nexcom.com

United Kingdom

NEXCOM UK
10 Vincent Avenue, Crownhill
Milton Keynes, Buckinghamshire
MK8 0AB, United Kingdom
Tel: 44-1908-218877
Fax: 44-1908-218867
Web: www.nexcomuk.co.uk
Email: sales@nexcomuk.co.uk

Japan

NEXCOM Japan
10F, Nakagin-Shiroyama Building
8-16-13. Ginza Chuou-KU
Tokyo 104-0061, Japan
Tel: 81-3-3524-4250
Fax: 81-3-3524-4252
Web: www.nexcom-jp.com
Email: sales@nexcom-jp.com

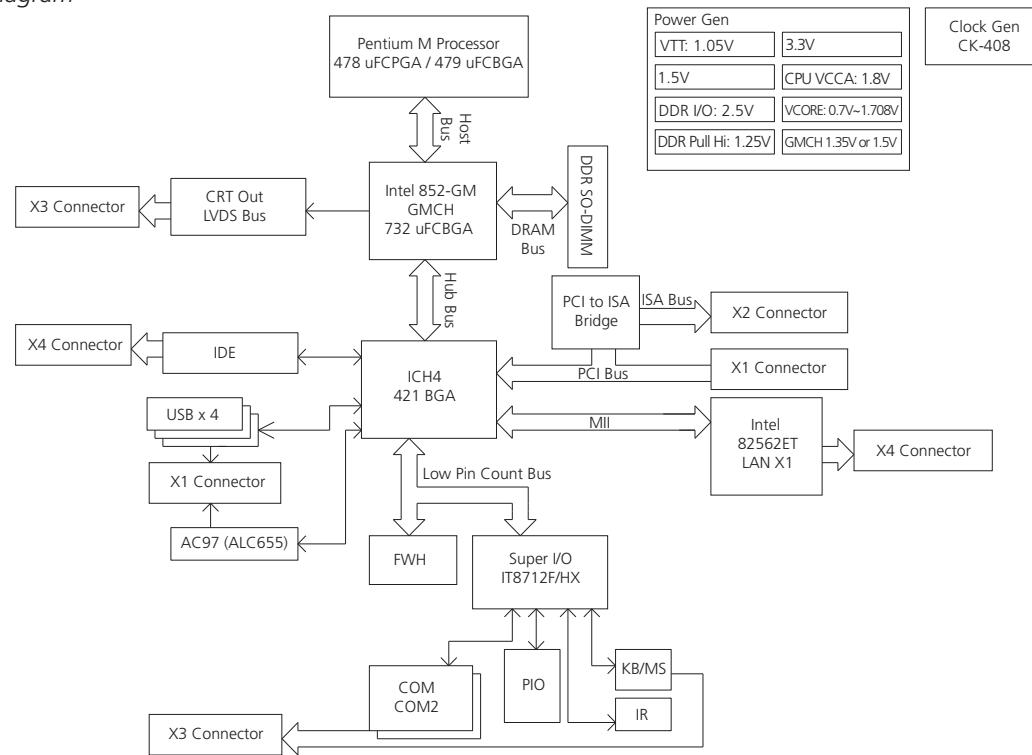
China

NEXCOM China
Room 301, Block E
Power Creative Building
No. 1 Shangdi East Rd.
Haidian District
Beijing, 100085, China
Tel: 86-10-5885-6655
Fax: 86-10-5885-1066
Web: www.nexcom.cn
Email: sales@nexcom.cn

ICES Series Ordering Information

Celeron M Base ICES 101-C65 (P/N: 10K00010102X0)	ETX Module with onboard Intel® Celeron® M 600 MHz 512KB L2 Cache processor, VGA/ISA/PCI/ IDE/LVDS/Audio/COM/LPT/USB2.0/ LAN Interface
Celeron M Base ICES 101-373 (P/N: 10K00010101X0)	ETX Module with onboard Intel® Celeron® M 1GHz 512KB L2 Cache processor, VGA/ISA/PCI/ IDE/LVDS/Audio/COM/LPT/USB2.0/ LAN Interface
Celeron M/ Pentium M Base ICES 101-SKT (P/N: 10K00010103X0)	ETX Module supporting socket Intel® Celeron® M / Pentium® M processor,VGA/ISA/ PCI/IDE/LVDS/ Audio/COM/LPT/USB2.0/LAN Interface

Optional Accessories Ordering Information


Drive HDD (P/N:73H1400G18X00)	HDD 2.5" IDE Drives, 40GB, 5400/8MB/12.5ms, Seagate: ST940814AM, PBFREE
Wireless MiniPCI Card (P/N:7510LAN001X00)	Wireless MiniPCI card,802.11 a/b/g AboCom:WCM6002 w/antenna& cable WCM6002
Wireless MiniPCI Card (P/N:7510LAN002X00)	Wireless MiniPCI card, 802.11 b/g AboCom: WMG2502 w/ antenna & cable WMG2502
GPS antenna (P/N:60233SAM05X00)	GPS antenna/5m/SMA180P, Stars Navigation: STR-3
GSM Antenna (P/N:60233SAM06X00)	GSM Antenna/5m/ SMA180P/900/1800, Stars Naviga- tion: TLM-3
Adapter (P/N:7400065005X00)	NICE3300/3330 POWER ADAPTER FSP:065-AAC(N09003),65W 19V/3.42A
Industrial SO-DIMM (P/N:7234M25608X00)	DDR400 SO- DIMM,PROMOS,industrial,-40°C to +85°C,32Mx8,256MB,200PIN,W/O ECC & REG,H:1.25", Apacer:76.8325G.105,PBFREE

CHAPTER 2: ICES 101 ETX Module Reference

ICES 101 Function Block Diagram

ICES 101 Function Block Diagram

ICES 101 Specifications

The following are the specifications of the ICES 101 ETX Module:

CPU

- Intel® ULV Celeron® M 600MHz (for ICES101- C65 model)
- Intel® ULV Celeron® M 1GHz (for ICES101-373 model)
- Intel® Celeron M/Pentium M Base (for ICES101-SKT model)

Note: The Intel® 852GM integrated graphics solution up to 64MB of dynamic video memory allocation can drive a standard progressive scan analog monitor with pixel resolution up to 1600 x 1200 at 85Hz.

Chipset

- Intel® 852GM + ICH4 chipset

System

- Supports one unbuffered nonECC DDR SO-DIMM

Memory

- 200/266 memory up to 1GB

Graphics

- Intel® 852GM integrated Graphic, supports both standard VGA and TFT.
- CRT: Supports up to 1600 x 1200 at 85Hz; 2048x1536 at 75Hz, DB15 CRT VGA connector x 1
- LVDS: Supports up to 48-bit, 1600 x 1200 at 60 Hz, supports single/dual pixel LVDS panel, onboard LVDS transmitter for LVDS Interface down to I/O board.

Ethernet

- Intel 82562ET 10/100 Fast Ethernet
- Supports PXE LAN boot function

Audio

- ALC655 CODEC - AC97 Audio Interface

Super I/O

- IT8712F

ETX Connectors

- X1
 - 32-bit/33Mhz PCI x 4,
 - Audio CODEC - AC97 Audio Interface
 - USB 2.0 x 4
- X2: ISA Interface
- X3
 - VGA x 1
 - LVDS x 1 (Dual Pixels)
 - LPT x 1
 - KB/Mouse
 - COM1 and COM2
 - IrDA 1.0 SIR
- X4
 - Ethernet (10/100)
 - SMBus
 - IDE x 2

RTC

- On-chip RTC with backup battery / external Li-ion

- Battery x 1 located on carrier board
- RTC tolerance less than 2 secs (24 hours) under 25°C environment

Watchdog

- Watchdog timeout programmable by software from one second to 256 seconds. Tolerance 5% under room temperature 25°C.

BIOS

- Award System BIOS
- Advanced Power Management support
- 4Mbit FlashROM

Power Supply

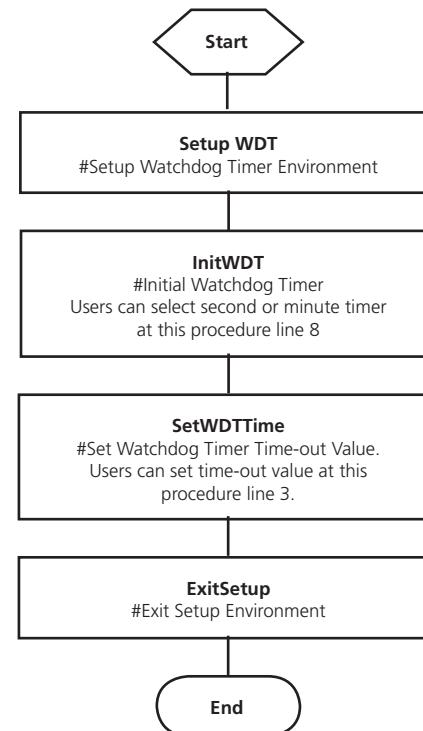
- Supports both AT and ATX power supply
- +5V power only, follows ETX power and ground pin definitions

Drivers

- Windows 2003
- Windows XP
- Windows 2000
- Linux

Certifications

- CE approval
- FCC Class A


Environment

- Operating temperature: 0°C to 60°C (32°F to 140°F)
- Storage temperature: -20°C to 85°C (-4°F to 185°F)
- Relative humidity: Non-operating 5%~95%, non-condensing

Dimensions

- 95mm (W) x 114mm (L) (3.74" x 4.5")

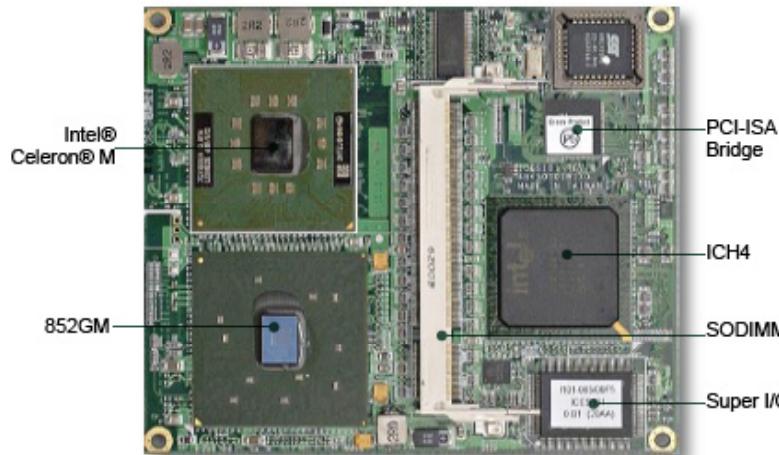
Watchdog Timer Programming

P.S. Common Library

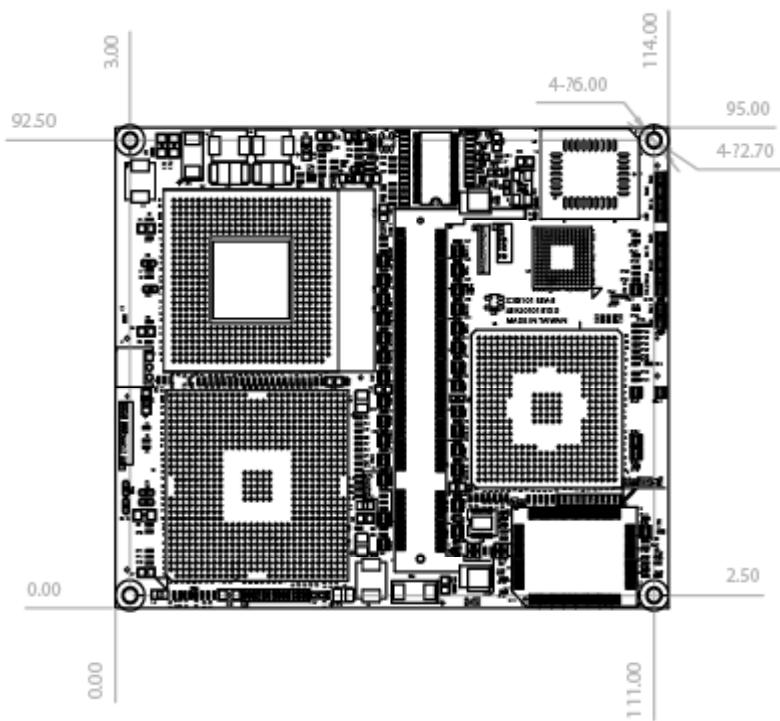
0	SetupWDT	PROC
1	mov	al,87h
2	out	2eh,al
3	mov	al,01h
4	out	2eh,al
5	mov	al,55h
6	out	2eh,al
7	out	2eh,al
8		
9	mov	al,07h
10	out	2eh,al
11	mov	al,07h
12	out	2fh,al
13	ret	
14	SetupWDT	ENDP

0	InitWDT	PROC
1	mov	al,71h
2	out	2eh,al
3	mov	al,30h
4	out	2fh,al
5		
6	mov	al,72h

7	out	2eh,al
8	mov	al,0c0h -Here!! set 0c0h for second, set 40h for minute
9	out	2fh,al
10	ret	
11	InitWDT	ENDP


0	SetWDTTime	PROC
1	mov	al,73h
2	out	2eh,al
3	mov	al,5 -Here!! Set 5 sec.(time out vale: 0x00-0xff)
4	out	2fh,al
5	ret	
6	SetWDTTime	ENDP

0	ExitSetup	PROC
1	mov	al,02h
2	out	2eh,al
3	mov	al,02h
4	out	2fh,al
5	ret	
6	ExitSetup	ENDP


ICES 101 Board Layout

ICES 101 Board (Top View)

ICES 101 Board Dimensions

ICES 101 Board Dimensions

IRQ Assignments

Interrupt request lines allow peripherals to communicate with the CPU for the function required. The following table lists the IRQs used.

IRQ Assignments

On board
IRQ0 Timer
IRQ1 KBC
IRQ2 Internal
IRQ3 COMA
IRQ4 COMB
IRQ5 Parallel Port / Generic
IRQ6 FDC
IRQ7 Parallel Port / Generic
IRQ8 RTC
IRQ9 Generic
IRQ10 Generic
IRQ11 Generic
IRQ12 PS/2 Mouse
IRQ13 Internal
IRQ14 IDE1
IRQ15 IDE2

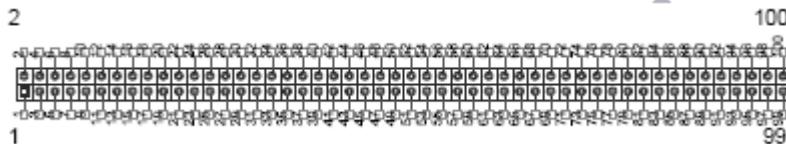
PCI Device Interrupt and BUS Assignments

The ICES 101 ETX module supports PCI expansion fully compliant with PCI specifications.

PCI Device Interrupts

Chipset	Config. BUS /			
DEVIC/ FUNCTION	PCI INT#	IDSEL	Special fea- ture descrip- tion	
ETX PCI(1)	0 / 9 /0	ABCD	AD19	ETX
ETX PCI(2)	0 / 10 /0	BCDA	AD20	ETX
ETX PCI(3)	0 / 11 /0	CDAB	AD21	ETX
ETX PCI(4)	0 / 12 /0	ABCD	AD23	ETX
DA82562ET	0 / 8 /0	BCDA	AD24	10/100 PHY
IT8888G	1 / 6 /0		AD22	PCI to ISA BRIDGE

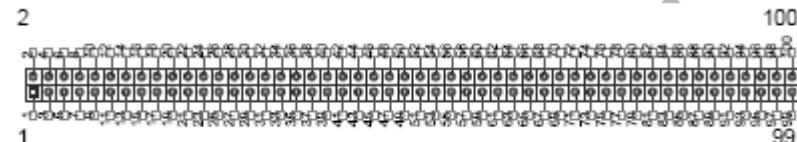
JP1: ETX Connector (X1)~PCI BUS, Audio Out, USB


Pin	Definition	Pin	Definition
1	GND	2	GND
3	PCICLK2	4	PCICLK3
5	GND	6	GND
7	PCICLK0	8	PCICLK1
9	REQ3#	10	GNTR3#
11	GNTR2#	12	+3V
13	REQ2#	14	GNTR1#
15	REQ1#	16	+3V
17	GNTR0#	18	NC
19	VCC	20	VCC
21	SERIRQ	22	REQ0#
23	AD0	24	+3V
25	AD1	26	AD2
27	AD3	28	AD4
29	AD6	30	AD5
31	CBE0#	32	AD7
33	AD8	34	AD9

Pin	Definition	Pin	Definition
35	GND	36	GND
37	AD10	38	AUXAL
39	AD11	40	MIC
41	AD12	42	AUXAR
43	AD13	44	NC
45	AD14	46	SNDL
47	AD15	48	ASGND
49	CBE1#	50	SNDR
51	VCC	52	VCC
53	PAR	54	SERR#
55	GPERR#	56	NC
57	PME#	58	USB2#
59	LOCK#	60	DEVSEL#
61	TRDY#	62	USB3#
63	IRDY#	64	STOP#
65	FRAME#	66	USB2
67	GND	68	GND
69	AD16	70	CBE2#
71	AD17	72	USB3
73	AD19	74	AD18
75	AD20	76	USB0#
77	AD22	78	AD21
79	AD23	80	USB1#

Pin	Definition	Pin	Definition
81	AD24	82	CBE3#
83	VCC	84	VCC
85	AD25	86	AD26
87	AD28	88	USB0
89	AD27	90	AD29
91	AD30	92	USB1
93	PCIRST#	94	AD31
95	INTC#	96	INTD#
97	INTA#	98	INTB#
99	GND	100	GND

JP2: ETX Connector (X2) ~ ISA BUS


Pin	Definition	Pin	Definition
1	GND	2	GND
3	SD14	4	SD15
5	SD13	6	MASTER#
7	SD12	8	DREQ7
9	SD11	10	DACK7#

Pin	Definition	Pin	Definition
11	SD10	12	DREQ6
13	SD9	14	DACK6#
15	SD8	16	DREQ5
17	MEMW#	18	DACK5#
19	MEMR#	20	DREQ0
21	LA17	22	DACK0#
23	LA18	24	IRQ14
25	LA19	26	IRQ15
27	LA20	28	IRQ12
29	LA21	30	IRQ11
31	LA22	32	IRQ10
33	LA23	34	IO16#
35	GND	36	GND
37	SBHE#	38	M16#
39	SA0	40	OSC
41	SA1	42	BALE
43	SA2	44	TC
45	SA3	46	DACK2#
47	SA4	48	IRQ3
49	SA5	50	IRQ4
51	VCC	52	VCC
53	SA6	54	IRQ5
55	SA7	56	IRQ6

Pin	Definition	Pin	Definition
57	SA8	58	IRQ7
59	SA9	60	SYSCLK
61	SA10	62	REFSH#
63	SA11	64	DREQ1
65	SA12	66	DACK1#
67	GND	68	GND
69	SA13	70	DREQ3
71	SA14	72	DACK3#
73	SA15	74	IOR#
75	SA16	76	IOW#
77	SA18	78	SA17
79	SA19	80	SMEMR#
81	IOCHRDY	82	AEN
83	VCC	84	VCC
85	SD0	86	SMEMW#
87	SD2	88	SD1
89	SD3	90	NOWS#
91	DREQ2	92	SD4
93	SD5	94	IRQ9
95	SD6	96	SD7
97	IOCHK#	98	RSTDVR
99	GND	100	GND

JP4: ETX (X3)~VGA, CLK, VIDEO, COM, LPT, IR, MS/KB

Pin	Definition	Pin	Definition
1	GND	2	GND
3	R	4	B
5	HSY	6	G
7	VSY	8	DDCK
9		10	DDDA
11	LVDS_CLKBM	12	LVDS_YBM3
13	LVDS_CLKBP	14	LVDS_YBP3
15	GND	16	GND
17	LVDS_YBP1	18	LVDS_YBP2
19	LVDS_YBM1	20	LVDS_YBM2
21	GND	22	GND
23	LVDS_YAM3	24	LVDS_YBP0
25	LVDS_YAP3	26	LVDS_YBM0
27	GND	28	GND
29	LVDS_YAM2	30	LVDS_CLKAP
31	LVDS_YAP2	32	LVDS_CLKAM

Pin	Definition	Pin	Definition
33	GND	34	GND
35	LVDS_YAP0	36	LVDS_YAP1
37	LVDS_YAM0	38	LVDS_YAM1
39	VCC	40	VCC
41	NC	42	
43	NC	44	BLON#
45	BIASON	46	DIGON
47	NC	48	NC
49	NC	50	NC
51	NC	52	NC
53	VCC	54	GND
55	STB#	56	AFD#
57	NC	58	PD7
59	IRRX	60	ERR#
61	IRTX	62	PD6
63	RXD2	64	INIT#
65	GND	66	GND
67	RTS2#	68	PD5
69	DTR2#	70	SLIN#
71	DCD2#	72	PD4
73	DSR2#	74	PD3
75	CTS2#	76	PD2
77	TXD2	78	PD1

Pin	Definition	Pin	Definition
79	RI2#	80	PDO
81	VCC	82	VCC
83	RXD1	84	ACK#
85	RTS1#	86	BUSY
87	DTR1#	88	PE
89	DCD1#	90	SLCT#
91	DSR1#	92	MSCLK
93	CTS1#	94	MSDAT
95	TXD1	96	KBCLK
97	RI1#	98	KBDAT
99	GND	100	GND

JP3: ETX Connector (X4)~IDE, LAN, I2C, SMBUS, MISC

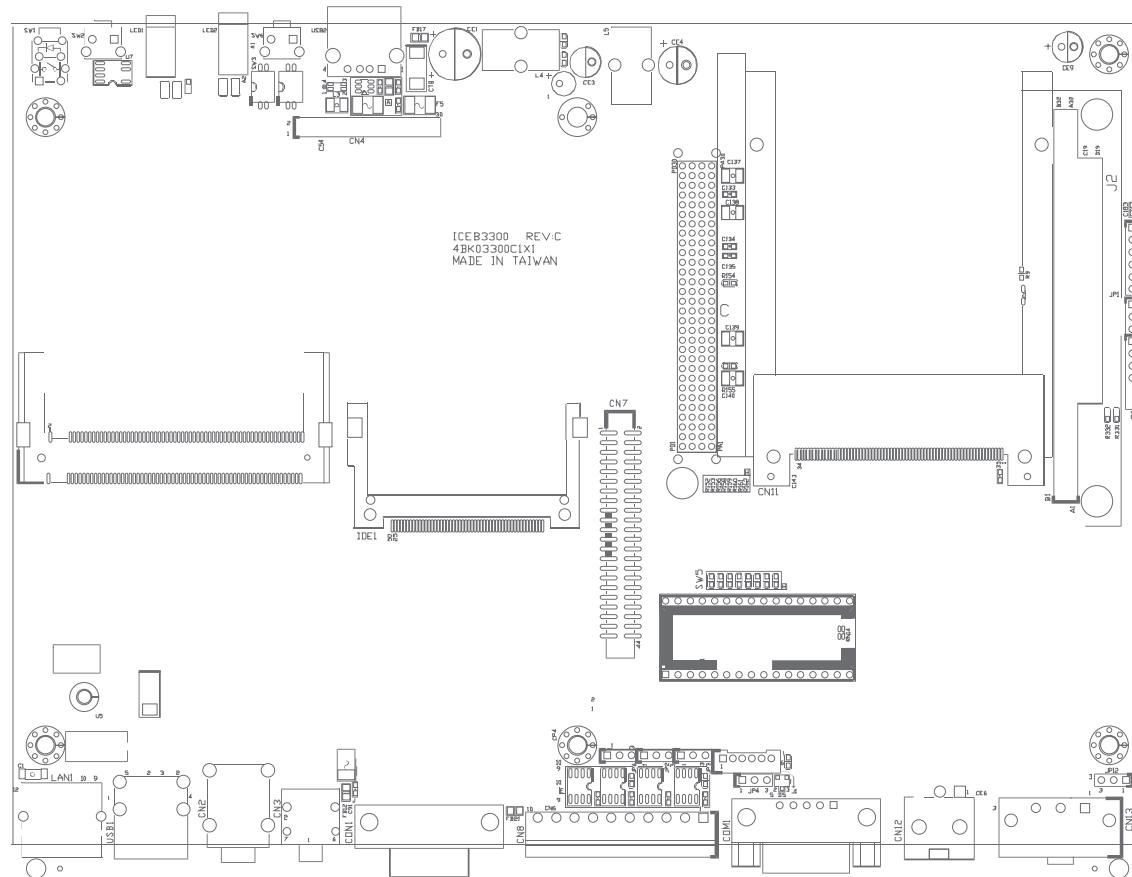
Pin	Definition	Pin	Definition
1	GND	2	GND
3	5V_SB	4	PWGIN
5	PS_ON	6	SPEAKER
7	PWRBTN#	8	BATT
9	NC	10	LILED#
11	RSMRST#	12	ACTLED#
13	NC	14	SPEEDLED#
15	NC	16	I2CLK
17	VCC	18	VCC
19	OVCR#	20	NC
21	EXTSMI#	22	I2DAT
23	SMBCLK	24	SMBDATA
25	SIDE_CS3#	26	SMBALRT#
27	SIDE_CS1#	28	NC
29	SIDE_A2	30	PIDE_CS3#
31	SIDE_A0	32	PIDE_CS1#

Pin	Definition	Pin	Definition
33	GND	34	GND
35	PDIAG_S	36	PIDE_A2
37	SIDE_A1	38	PIDE_A0
39	SIDE_INTRQ	40	PIDE_A1
41	BATLOW#	42	GPE1#
43	SIDE_AK#	44	PIDE_INTRQ
45	SIDE_RDY	46	PIDE_AK#
47	SIDE_IOR#	48	PIDE_RDY
49	VCC	50	VCC
51	SIDE_IOW#	52	PIDE_IOR#
53	SIDE_DRQ	54	PIDE_IOW#
55	SIDE_D15	56	PIDE_DRQ
57	SIDE_D0	58	PIDE_D15
59	SIDE_D14	60	PIDE_D0
61	SIDE_D1	62	PIDE_D14
63	SIDE_D13	64	PIDE_D1
65	GND	66	GND
67	SIDE_D2	68	PICD_D13
69	SIDE_D12	70	PICD_D2
71	SIDE_D3	72	PIDE_D12
73	SIDE_D11	74	PIDE_D3
75	SIDE_D4	76	PIDE_D11
77	SIDE_D10	78	PIDE_D4

Pin	Definition	Pin	Definition
79	SIDE_D5	80	PIDE_D10
81	VCC	82	VCC
83	SIDE_D9	84	PIDE_D5
85	SIDE_D6	86	PIDE_D9
87	SIDE_D8	88	PIDE_D6
89	NC	90	CBLID_P
91	RXD#	92	PIDE_D8
93	RXD	94	SIDE_D7
95	TXD#	96	PIDE_D7
97	TXD	98	HDRST#
99	GND	100	GND

CHAPTER 3: ICEB 3300 CARRIER BOARD REFERENCE

ICEB 3300 Board Layout


ICEB 3300 Board Layout

//Jeffrey will provide photo

ICEB 3300 Jumpers and Switches

The following figure identifies the locations of different jumpers on the ICEB 3300 board. Use your PDF viewer's zoom function to enhance readability.

ICEB 3300 Board Dimensions

xxx Missing information

ICEB 3300 Specifications

The following are the specifications of the ICEB 3300 Carrier Board.

I/O Ports

Front I/O ports

- Power status LEDs, HDD status LEDs
- One LED that connects to GPO, programmable for alarm or other purposes defined by developer
- USB 2.0 x 1
- Power reset button
- Internal and external CF socket2
- PCMCIA socket
- Power-on switch

Rear I/O Ports

- DB9 COM3 and COM4; Screw Terminal COM5 and COM6 (RS422/485 only)
- RJ45 with LED connector x 1
- USB 2.0 Ports x 2 (USB3, USB4) with one double-stack connector
- +6V ~+30V DC Power Input with 3-pin power connector (power, ignition, ground)
- +5/+12V DC Power Output

- VGA Connector (DB15)

- DB26 female for LVDS with backlight power and USB 2.0

- Audio output for Line-in, Line-out, Mic-in and Speaker-out with phone-jack connectors x 4

- Digital IO DB9 connector x 1 (female)

IDE

- 44-pin IDE Connector x 1 (Primary IDE)
- Compact Flash Socket x1 (external)

COM Ports

- COM 3~4 : External DB9 RS232
- COM 5~6 : RS422/485 with 10pin Screws Terminal Connector
- COM 1~2 : RS232 for GSM/GPS module, Reserved Board to Board connector

USB 2.0

- USB 2.0 Port x 1 in the Front
- USB 2.0 Port x1 with LVDS, Backlight Power through DB26 female connector in the Rear
- USB 2.0 Ports x 2 in the Rear

PIO

- LPT Port x 1: 25-pin Box Header Supporting bi-directional, EPP and ECP modes

Audio

- 4x Phone Jack connectors for Line-in, Line-out, Mic-in and Speaker-out in the Rear
- Mic-in with internal pin-header to connect with GSM/GPS module's

Graphic

- External Display Interface by Analog CRT DB15 VGA Connector in the Rear
- LVDS with +12V DC backlight power output and USB 2.0 through DB26 female connector.

Ethernet

- 10/100 Fast Ethernet, RJ45 with LED connector x 1

Expansion

- PC/104 Plus
- Mini-PCI Socket x 1
- PCI Cardbus controller RICOH R5C485 to support PCMCIA socket x1 in the Front

Power Supply

- On board DC to DC circuit support Power Input Range from +6V to +36VDC.
- Reserved one Connector with 2x5 pin Mate-N-Lock connector (AMP_770971-1) for DC output with external
- Power Device connection. For example, the optional External Active cooling FAN Kit or External Panel power.
- The DC Output include +12V and +5V together in the pin definition at

Max.10W

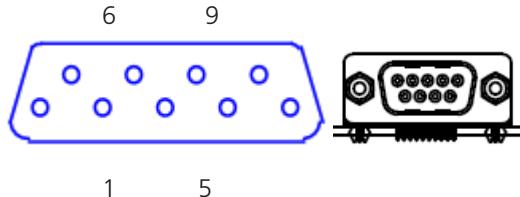
- Power-on Delay Time is selectable for Disable and Enable with 10sec / 30sec / 1min / 3min / 10min / 30min
- Power-off Delay time is selectable for Disable and Enable with 1min /10min / 30min / 60min / 120min
- Ignition enable/disable is jumper selectable.
- Over-Voltage Protection: for over than 75V(must have)(VTC to have to 100V above), system shut down

SRAM

- Reserved NVRAM Socket for the Optional 512 KB battery backed SRAM (NVRAM)

Digital I/O

- 4 Input & 4 Output Isolated Digital I/O (+5V TTL Level)
- DB9 Female in the Rear

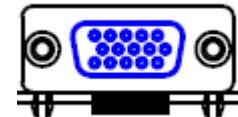
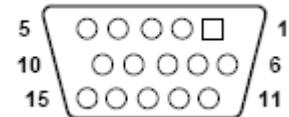

LED and Others

LED	Definition	LED Color
UP:Power	Power Off: LED is off Power On: LED is on	Green
Down:IDE	Activity: LED blinking	Yellow
LAN	Activity: Blinking LED If link is available, LED is on	L: Yellow R: Green
Up: GSM status		Yellow
Down: GPO	Customer Programmable	Yellow

ICEB 3300 External Connectors

GPIO Connector

- Connector size: DSUB-9 PIN
- Connector location

- Connector pin definition (COM1)

Pin	Definition	Pin	Definition
1	GIN	2	GIN
3	GIN	4	GIn
5	GOUT	6	GIN
7	GOUT	8	GOUT
9	GND		

VGA Connector (CON1)

- Connector size: DSUB-15
- Connector location

- Connector pin definition

Pin	Definition	Pin	Definition
1	RED	2	GREEN
3	BLUE	4	NC
5	Gnd	6	Gnd
7	Gnd	8	Gnd
9	VCC	10	Gnd
11	NC	12	DDCDAT
13	Hsync	14	Vsync
15	DDCCLK		

LAN Connector (LAN1)

- Connector size: RJ-45
- Connector location

- Connector pin definition

Pin	Definition	Pin	Definition
1	TX+	2	TX-
3	RX+	4	N/C1
5	N/C2	6	RX-
7	N/C3	8	N/C4
9	LAN Speed LED	10	Vcc3
11	LAN Link LED	12	Vcc3

USB Connector (USB2)

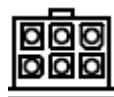
- Connector location

Pin	Definition	Pin	Definition
1	VCC	2	DATA-
3	DATA+	4	GND

(USB1)

Pin	Definition	Pin	Definition
1	VCC	2	DATA-
3	DATA+	4	GND
5	VCC	6	DATA-
7	DATA+	8	GND

LVDS Power Connector (J1)


- Connector location

Pin	Definition	Pin	Definition
1	Panel_backlight	2	Panel_VDD
3	GND	4	GND
5	4.5V	6	LVDS_BIASON

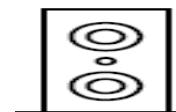
External 12V & 5V Power and Fan Sensor (CN12)

6 4

3 1

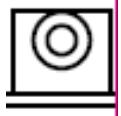
Pin	Definition	Pin	Definition
1	5V	2	12V
3	SEN+	4	GND
5	GND	6	SEN-

RS422/485 Connector COM5, COM6 (CN8)


- Connector location

- Connector pin definition

Pin	Definition	Pin	Definition
1	COM5/RS422/485 TX-	2	COM5/RS422/485 TX+
3	COM5/RS422 RX-	4	COM5/RS422 RX+
5	GND	6	COM6/RS422/485 TX-
7	COM6/RS422/485 TX+	8	COM6/RS422 RX-
9	COM6/RS422 RX+	10	GND


Mic and Line Out (CN2)

- Connector pin definition

Pin	Definition	Pin	Definition
1	NC	2	SOUND_SNDR
3	\GND	4	GND
5	SOUND_SNDL	22	MIC IN

23	GND	24	GND
25	MIC VCC	36	Gnd
37	Gnd	38	Gnd
39	Gnd		

Line In (CN3)

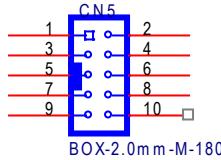
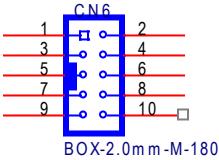
- Connector pin definition

Pin	Definition	Pin	Definition
1	GND	2	LINE_INDL
3	GND	4	GND
5	LINE_INDR		

Power Input (CN13)

DC Power Input Connecto

DC Power input Voltage (CN13)

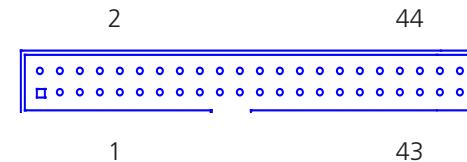


Pin No.	Function Description
1	GND
2	VIN(6V~36V)
3	IGNITION

Power On & IDE Active (LED1)**PWR****HDD****GPIO & GSM LED (LED2)****A1****A2**

ICEB 3300 Internal Connectors

RS232 Connector COM3 (CN6), COM4 (CN5)

- Connector size: 2 x 10 = 20-pin pin header (2.0 mm pitch)
- Connector location

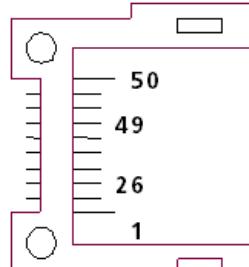


- Connector pin definition

Pin	Definition	Pin	Definition
1	DCD	2	RXD
3	TXD	4	DTR
5	GND	6	DSR
7	RTS	8	CTS
9	RI		

IDE Connector (CN7)

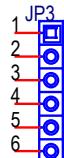
- Connector size: 2 x 22 = 44 Pins Box Header, (2.0 mm Pitch)
- Connector location


- Connector pin definition

Pin	Definition	Pin	Definition
1	Rstdrv-	2	Gnd
3	IDEd7	4	IDEd8
5	IDEd6	6	IDEd9
7	IDEd5	8	IDEd10
9	IDEd4	10	IDEd11
11	IDEd3	12	IDEd12
13	IDEd2	14	IDEd13
15	IDEd1	16	IDEd14
17	IDEd0	18	IDEd15
19	Gnd	20	NC
21	IDEreq-	22	Gnd
23	IDEiow-	24	Gnd
25	IDEior-	26	Gnd
27	IDErdy	28	IDE-PD1

29	Ideack-	30	Gnd
31	Ideirq	32	NC
33	DA1	34	66 Detect
35	DA0	36	DA2
37	SCS1	38	SCS3
39	Ideact-	40	Gnd
41	VCC5	42	VCC
43	Gnd	44	NC

CompactFlash Connector (IDE1, IDE2)


- Connector size: 2 x 25 = 50 pins
- Connector location

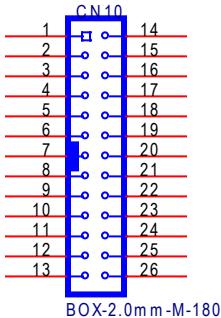
Pin	Definition	Pin	Definition
1	Gnd	2	Data 3
3	Data 4	4	Data 5
5	Data 6	6	Data 7
7	HDC CS100	8	Gnd
9	Gnd	10	Gnd
11	Gnd	12	Gnd
13	+5V	14	Gnd
15	Gnd	16	Gnd
17	Gnd	18	Disk Address 2
19	Disk Address 1	20	Disk Address 0
21	Data 0	22	Data 1
23	Data 2	24	IOCS16# (NC)

25	CF_CD2# (Pull-down)	26	CF_CD1# (Pull-down)
27	Data 11	28	Data 12
29	Data 13	30	Data 14
31	Data 15	32	HDC CS300
33	CF_VS1# (NC)	34	IOR
35	IOW	36	CF_WE# (+5V)
37	Interrupt 15	38	+5V
39	CF_CSEL# (Master or Slave)	40	CF_VS2# (NC)
41	Reset #	42	IOCHRDY
43	DMA REQ / DACK (NC)	44	DMA ACK# /CF_REG# (+5V)
45	HDD Active Led	46	DMA66 Detect / CF_PDIAG#
47	Data 8	48	Data 9
49	Data 9	50	Gnd

CPLD Programmer PIN Header (JP5)

PIN-2.54mm-M-180

Pin	Definition	Pin	Definition
1	+3.3V	2	GND
3	TCK	4	TDO
5	TDI	6	TMS


Microchip Programmer PIN Header (JP7)

PIN-2.54mm-M-180

Pin	Definition	Pin	Definition
1	+3.3V	2	ICSPDA
3	ICSPCLK	4	GND
5	5V	6	MCLR

PIO Connector (CN10)

- Connector size: Box header 2x13 = 26-pin (2.0mm)
- Connector location: CN10

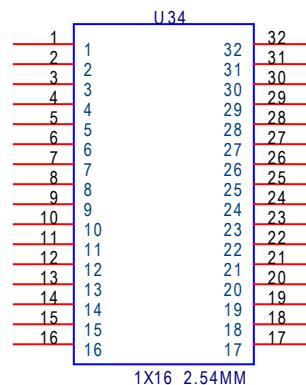
- Connector pin definition

Pin	Definition	Pin	Definition
1	Line Print Strobe	2	Parallel Data 0
3	Parallel Data 1	4	Parallel Data 2
5	Parallel Data 3	6	Parallel Data 4
7	Parallel Data 5	8	Parallel Data 6
9	Parallel Data 7	10	Acknowlege
11	Busy	12	Pape Empty
13	Select	14	Auto Feed
15	Error	16	Initialize
17	Select Input	18	Chassis Gnd
19	Chassis GND	20	Chassis GND

21	Chassis GND	22	Chassis GND
23	Chassis GND	24	Chassis GND
25	Chassis GND	26	Chassis GND

LVDS Connector + USB0 (CN9)

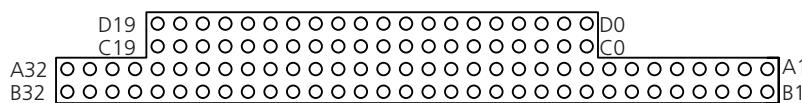
- Connector size: 2 X 15 (2.0mm)
- Connector location


- Connector pin definition

CN9

Pin	Definition	Pin	Definition
1	LVDS_CLK	2	LVDS_DAT
3	Panel_VDD	4	LVDS_1
5	LVDS_9	6	LVDS_0
7	LVDS_8	8	Panel_VDD

9	LVDS_GND	10	LVDS_GND
11	LVDS_7	12	LVDS_3
13	LVDS_6	14	LVDS_2
15	LVDS_GND	16	LVDS_GND
17	LVDS_5	18	Panel_backlight
19	LVDS_4	20	Panel_backlight
21	LVDS_GND	22	LVDS_GND
23	USB_0#	24	USB_GND
25	USB_0	26	USB_VCC
27	USB_GND	28	USB_GND
29	Panel_backlight	30	GND


NVRAM Pin Defined (U34)

Pin	Definition	Pin	Definition
1	ISA A18	17	ISA D3
2	ISA A16	18	ISA D4
3	ISA A14	19	ISA D5
4	ISA A12	20	ISA D6
5	ISA A7	21	ISA D7
6	ISA A6	22	ROM CS#
7	ISA A5	23	ISA A10
8	ISA A4	24	BMEMR#
9	ISA A3	25	ISA A11
10	ISA A2	26	ISA A9
11	ISA A1	27	ISA A8
12	ISA A0	28	ISA A13

13	ISA D0	29	BMEMW#
14	ISA D1	30	ISA A17
15	ISA D2	31	ISA A15
16	GND	32	+5V

PC-104 Plus Connector (J2A~ISA)

Connector location and pin definition

Pin	D	C
0	GND	GND
1	MEMCS16*	SBHE*
2	IOCS16*	LA23
3	IRQ10	LA22
4	IRQ11	LS21
5	IRQ12	LS20
6	IRQ15	LS19
7	IRQI4	LA18
8	DACK0*	LA17
9	DRQ0	MEMR*
10	DACK5*	MEMW*
11	DRQ5	SD8

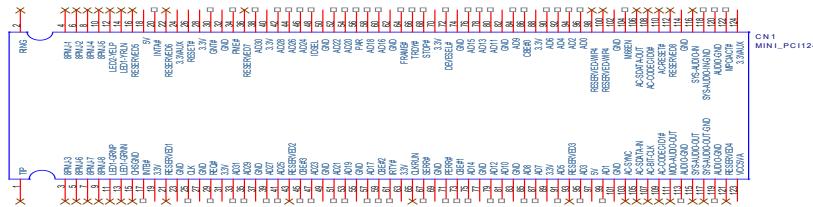

12	DACK6*	SD9
13	DRQ6	SD10
14	DACK7*	SD11
15	DRQ7	SD12
16	+5V	SD13
17	MASTER*	SD14
18	GND	SD15
19	GND	GND/KEY

Pin	A	B
1	IOCHCK*	GND
2	D7	RSTDRV
3	D6	+5V
4	D5	IRQ9
5	D4	N/A
6	D3	DRQ2
7	D2	-12V
8	D1	ENDXFR*
9	D0	+12V
10	IOCHRDY	GND/KEY
11	AEN	SMEMW*
12	A19	SMEMR*
13	A18	IOW*
14	A17	IOR*
15	A16	DACK3*
16	A15	DRQ3
17	A14	DACK1*
18	A13	DRQ1
19	A12	REFRESH*
20	A11	SYSCLK

21	A10	IRQ7
22	A9	IRQ6
23	A8	IRQ5
24	A7	IRQ4
25	A6	IRQ3
26	A5	DACK2*
27	A4	TC
28	A3	BALE
29	A2	+5V
30	A1	OSC
31	A0	GND
32	GND	GND

PC-104 Plus Connector (J2B~PCI)

- Connector location

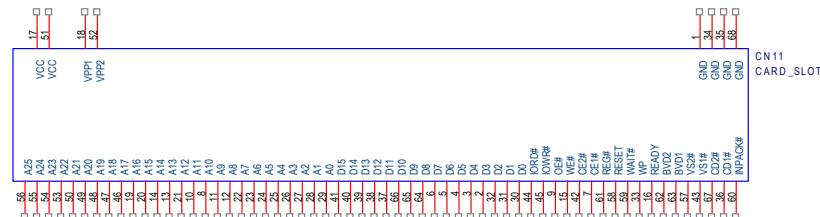


Pin	Definition			
	A	B	C	D
1	Gnd/5.0V KEY	Reserved	+5V	AD00
2	VI/O	AD02	AD01	+5V
3	AD05	Gnd	AD04	AD03
4	C/BE0#	AD07	Gnd	AD06
5	Gnd	AD09	AD08	Gnd
6	AD11	VI/O	AD10	M66EN

7	AD14	AD13	Gnd	AD12
8	+3.3V	C/BE1#	AD15	+3.3V
9	SERR#	GND	SB0#	PAR
10	Gnd	PERR#	+3.3V	SDONE
11	STOP#	+3.3V	LOCK#	Gnd
12	+3.3V	TRDY#	Gnd	DEVSEL#
13	FRAME#	Gnd	IRDY#	+3.3V
14	Gnd	AD16	+3.3V	C/BE2#
15	AD18	+3.3V	AD17	Gnd
16	AD21	AD20	Gnd	AD19
17	+3.3V	AD23	AD22	+3.3V
18	IDSEL0	Gnd	IDSEL1	IDSEL2
19	AD24	C/BE3#	VI/O	IDSE;3
20	Gnd	AD26	AD25	Gnd
21	AD29	+5V	AD28	AD27
22	+5V	AD30	Gnd	AD31
23	REQ0#	Gnd	REQ1#	VI/O
24	Gnd	REQ2#	+5V	GNT0#
25	GNT1#	VI/O	GNT2#	Gnd
26	+5V	CLK0	Gnd	CLK1
27	CLK2	+5V	CLK3	Gnd
28	Gnd	INTD#	+5V	RST#
29	+12V	INTA#	INTB#	INTC#
30	-12V	Reserved	Reserved	Gnd/3.3V KEY

Mini PCI (CN1)

- Connector location

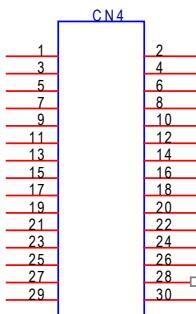


xxx I need the Word or Excel version of this table.

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	TIP	2	RING	63	3.3V	64	FRAME#
	Key		Key	65	CLKRUN#	66	TRDY#
3	8PMJ-3, 4	4	8PMJ-1, 4	67	SERR#	68	STP#
5	8PMJ-3, 4	6	8PMJ-2, 4	69	GROUND	70	3.3V
7	8PMJ-7, 4	8	8PMJ-4, 3	71	PERR#	72	DEVSEL#
9	8PMJ-3, 4	10	8PMJ-5, 4	73	C/BE1#	74	GROUND
11	LED1_GRNP	12	LED2_YELP	75	AD[14]	76	AD[15]
13	LED1_GRNN	14	LED2_YELN	77	GROUND	78	AD[13]
15	CHSGND	16	RESERVED	79	AD[12]	80	AD[11]
17	INTB#	18	5V	81	AD[10]	82	GROUND
19	3.3V	20	INTA#	83	GROUND	84	AD[09]
21	RESERVED	22	RESERVED	85	AD[08]	86	C/BE0#
23	GROUND	24	3.3VAXU	87	AD[07]	88	3.3V
25	CLK	26	RST#	89	3.3V	90	AD[06]
27	GROUND	28	3.3V	91	AD[05]	92	AD[04]
29	REQ#	30	GNT#	93	RESERVED	94	AD[02]
31	3.3V	32	GROUND	95	AD[03]	96	AD[00]
33	AD[31]	34	PME#	97	5V	98	RESERVED_WIP ⁵
35	AD[29]	36	RESERVED	99	AD[01]	100	RESERVED_WIP ⁵
37	GROUND	38	AD[30]	101	GROUND	102	GROUND
39	AD[27]	40	3.3V	103	AC_SYNC	104	M66E
41	AD[25]	42	AD[28]	105	AC_SDATA_IN	106	AC_SDATA_OUT
43	RESERVED	44	AD[26]	107	AC_BIT_CLK	108	AC_CODEC_ID#0
45	C/BE0#	46	AD[24]	109	AC_CODEC_ID#1	110	AC_RESET#
47	AD[23]	48	IDSEL	111	MOD_AUDIO_MON	112	RESERVED
49	GROUND	50	GROUND	113	AUDIO_GND	114	GROUND
51	AD[21]	52	AD[22]	115	SYS_AUDIO_OUT	116	SYS_AUDIO_IN
53	AD[19]	54	AD[20]	117	SYS_AUDIO_OUT GND	118	SYS_AUDIO_IN GND
55	GROUND	56	PAR	119	AUDIO_GND	120	AUDIO_GND
57	AD[17]	58	AD[18]	121	RESERVED	122	MPCIACT#

PCMCIA (CN11)

- Connector location



Pin	Definition	Pin	Definition	Pin	Definition	Pin	Definition
1	GND	2	D3	3	D4	4	D5
5	D6	6	D7	7	CE1#	8	A10
9	OE#	10	A11	11	A9	12	A8
13	A13	14	A14	15	WE#	16	RDY
17	VCC	18	VPP1	19	A16	20	A15
21	A12	22	A7	23	A6	24	A5
25	A4	26	A3	27	A2	28	A1
29	A0	30	D0	31	D1	32	D2
33	WP	34	GND	35	GND	36	CD1#
37	D11	38	D12	39	D13	40	D14
41	D15	42	CE2#	43	VS1	44	IORD#
45	IOW#	46	A17	47	A18	48	A19
49	A20	50	A21	51	VCC	52	VPP2
53	A22	54	A23	55	A24	56	A25

57	VS2	58	CRESET	59	WAIT#	60	INPACK#
61	REG#	62	BVD2	63	BVD1	64	D8
65	D9	66	D10	67	CD2#	68	GND

GPS & GSM Connector (CN4)

- Connector size: 2 X 15 (2.0mm)
- Connector location

Pin	Definition	Pin	Definition
1	GSM_LED	2	GPS_LED
3	GPS_RXD_A	4	GPS_3.3V
5	GPS_TXD_A	6	GND
7	GND	8	GSM_4.2V
9	GSM_RXD_B	10	GSM_DCD_B
11	GSM_DTR_B	12	GSM_TXD_B
13	GSM_DSR_B	14	GSM_RTS_B

15	GSM_CTS_B	16	GSM_RI_B
17	GND	18	GSM_4.2V
19	GSM_4.2V	20	GND
21	GND	22	GSM_4.2V
23	G_LINE_C_R	24	GND
25	G_LINE_C_L	26	G_MICIN
27	GND	28	NC
29	GSM_POWER_ON	30	GND

Reset Button (SW1)

xxx Missing information

GSM Reset Button (SW6)

xxx This is no longer in the ICEB specs that I received on 7/2. Please confirm that we're removing this.

Power Button (SW5)

xxx Missing information

954 IDSEL Select (JP3)

Pin No.	Status	Function Description
1-2	Short	PCI_AD22
2-3	Short*	PCI_AD26

CMOS Input Voltage Select (JP4)

Pin No.	Status	Function Description
1-2	Short*	VBAT IN
2-3	Short	Clear CMOS

DC Input Voltage Select (JP12)

Pin No.	Status	Function Description
1-2	Short*	IGNITION
2-3	Short	VIN_M

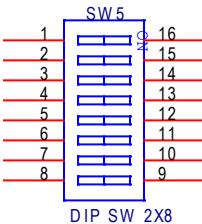
CF (IDE1) Primary Master/Slave Select (JP6)

Pin No.	Status	Function Description
1-2	Short*	Slave
2-3	Short	Master

CF (IDE2) Primary Master/Slave Select (JP1)

Pin No.	Status	Function Description
1-2	Short	Slave
2-3	Short*	Master

LVDS Power Input Voltage Select (JP2)


Pin No.	Status	Function Description
1-2	Short	+5V IN
2-3	Short*	+3.3V IN

LED I/O Port Address & Data

Pin No.	Function Description
A1	GSM STATUS
A2	I/O PORT Address : EEEH DATA1 : 0(LIGHT) 1(DART)

On & Off Delay Select (SW5)

Connector location

Connector pin definition

Pin	Definition
1	On delay enable/disable
2	Off delay enable/disable
3	On delay key A
4	On delay key B
5	On delay key C
6	Off delay key D
7	Off delay key E
8	Off delay key F

You can enable/disable and configure the delay timer by using a combination of pin settings. Use Pin 1 and Pin 2 to enable or disable the on or off delay timer, and then set the other pins to configure the timer. Refer to the table below.

For example, if you want to enable power on delay for one minute, do the following:

1. Set Pin 1 to ON.

2. Set PIN 3 to OFF.

3. Set PIN4 to ON.

4. Set PIN 5 to OFF.

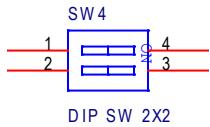
Similarly, if you want to delay power off for five minutes, do the following:

1. Set Pin 2 to ON.

2. Set PIN 6 to ON.

3. Set PIN7 to ON.

4. Set PIN 8 to OFF.



Pin	Time Set	10 sec	30 sec	1 min	5 min	10 min	15 min	30 min	1 hr
3	On delay A	OFF	ON	OFF	ON	OFF	ON	OFF	ON
4	On delay B	OFF	OFF	ON	ON	OFF	OFF	ON	ON
5	On delay C	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Pin	Time Set	10 sec	30 sec	1 min	5 min	10 min	15 min	30 min	1 hr
4	Off delay D	OFF	ON	OFF	ON	OFF	ON	OFF	ON
5	Off delay E	OFF	OFF	ON	ON	OFF	OFF	ON	ON
6	Off delay F	OFF	OFF	OFF	OFF	ON	ON	ON	ON

RS-422/485 Select (SW4)

- Connector location

Connector pin definition

Pin	Definition	Definition
1(COM5)	OFF(RS422)	ON(RS422&RS485)
2(COM6)	OFF(RS422)	ON(RS422&RS485)

CHAPTER 4: VTC 3300 REFERENCE

VTC 3300 Package Contents

Before continuing, verify that the VTC 3300 package that you received is complete. Your VTC 3300 package should have all the items listed in the following table.

Qty	Item	Part Number
1	CD with driver and user manual	
1	IDE cable	60233IDE54X00
1	3-pin power terminal block	4NCPM00302X00
1	10-pin RS422/485 terminal block	4NCPF01002X00
4	I-head bolts screw for HDD installation	50311F0090X000

If any of these items are missing or damaged, contact your local NEXCOM distributor or sales representative immediately. Your NEXCOM products should be free of defects and in perfect working order upon receipt.

While unpacking, check for signs of shipping damage (for example, damaged box, scratches, dents, etc.) If it is damaged or it fails to meet the specifications, notify the NEXCOM service department or your local sales representative immediately. Also notify the carrier. Retain the shipping carton and packing material for inspection by the carrier.

After inspection, NEXCOM will make arrangements for repair or replacement.

VTC 3300 Hardware Specifications

The following are the hardware specifications of VTC 3300.

Main Board

- ICES 101 ETX Module
- Supports ETX Module with Intel® Pentium® M/ Celeron® M processor, VGA/ISA/
- PCI/IDE/LVDS/Audio/COM/LPT/USB2.0/LAN interface

Main Memory

- 1 x 200-pin SO-DIMM socket for up to 1GB Non-ECC Non-Registered DDR
- SDRAM memory

I/O Interface-Front

- Power / HDD Status LEDs
- 1 LED, connect to GPIO, programmable for alarm or other application specific purposes
- 1 x PCMCIA
- 1 x External access CompactFlash socket (2nd CompactFlash)
- 1 x USB 2.0
- 1 x System Reset button

- 1 x System Power-on Switch
- Audio output with 1x RJ-11 to headset
- 1 x GSM SIM-Card socket (COM1)
- 1 x Reset button for integrated GSM/GPRS and GPS Module (COM2)
- Antenna Mounting Holes for 2x SMA-type (WLAN and GPS) and 1x FME-type
- (GSM)

I/O Interface-Rear

- 4x COM ports:
- 2 x DB9 for COM3 and COM4 (Support RS-232). *Before using COM3/4, please install the PCI954 driver. This driver is available in the Driver CD-ROM.*
- 1 x screw terminal for COM5 and COM6 (Support RS-422/485)
- 1 x RJ45 with LED for 10/100M bps Ethernet
- 2 x USB 2.0 ports
- 1 x DB15 VGA
- 1 x DB26 for LVDS, 1x USB 2.0 and back-light voltage
- 1 x DB9 Female for digital I/O with 4-input and 4-output
- Audio interface with Line-in, Line-out, and Mic-in
- +6 to +36VDC power input with 3-pin power input connector ignition and ground. *VTC 3300 has integrated an overvoltage circuit protection design to protect the system from excess current.*
- +5 VDC and +12VDC power output to turn on/off fan with thermal control

Device

- 1 x Front Access PCMCIA socket / CompactFlash socket
- 1 x Internal CompactFlash socket
- 1 x Internal 1.8"/2.5" HDD drive bay
- 1 x NVRAM socket

Expansion Slot

- 1 x Cardbus PCMCIA socket
- 1 x PC/104+, with PC/104 x1 (ISA) and PCI 104 x1 (PCI)
- 1 x Mini-PCI socket

Dimensions

- 260 mm (W) x 176 mm (D) x 70 mm (H)

Construction

- Aluminum chassis with fan-less design

Environment

- Operating temperature: Ambient with air flow : -10°C to 50°C (with CF T-case (Surface Temperature of Chassis): -10 °C ~ 55 °C (CF)
- Storage temperature: -20°C to 80°C
- Relative humidity: 10% to 90% (Non-condensing)
- Vibration:
 - Operating: MIL-STD-810F, Method 514.5, Category 20, Ground Vehicle –Highway Truck (within Anti-vibration bracket)
 - Storage: MIL-STD-810F, Method 514.5, Category 24, Integrity Test (within Antivibration bracket)

- Shock:
 - Operating: MIL-STD-810F, Method 516.5, Procedure I, Trucks and semitrailers=20g (within Anti-vibration bracket)
 - Crash Hazard: MIL-STD-810F, Method 516.5, Procedure V, Ground equipment= 75g (within anti-vibration bracket)

Certifications

- CE approval
- FCC
- e Mark

PCI Device Interrupt and IDSEL

Chipset	PCI INT#	REQ# /GNT#	IDSEL
Mini PCI	ABCD	REQ0,GNT0	AD19
PC-104+	BCDA	REQ1,GNT1	AD20
PCMCIA	CDAB	REQ2,GNT2	AD21
MPCI954	DABC	REQ3,GNT3	AD22

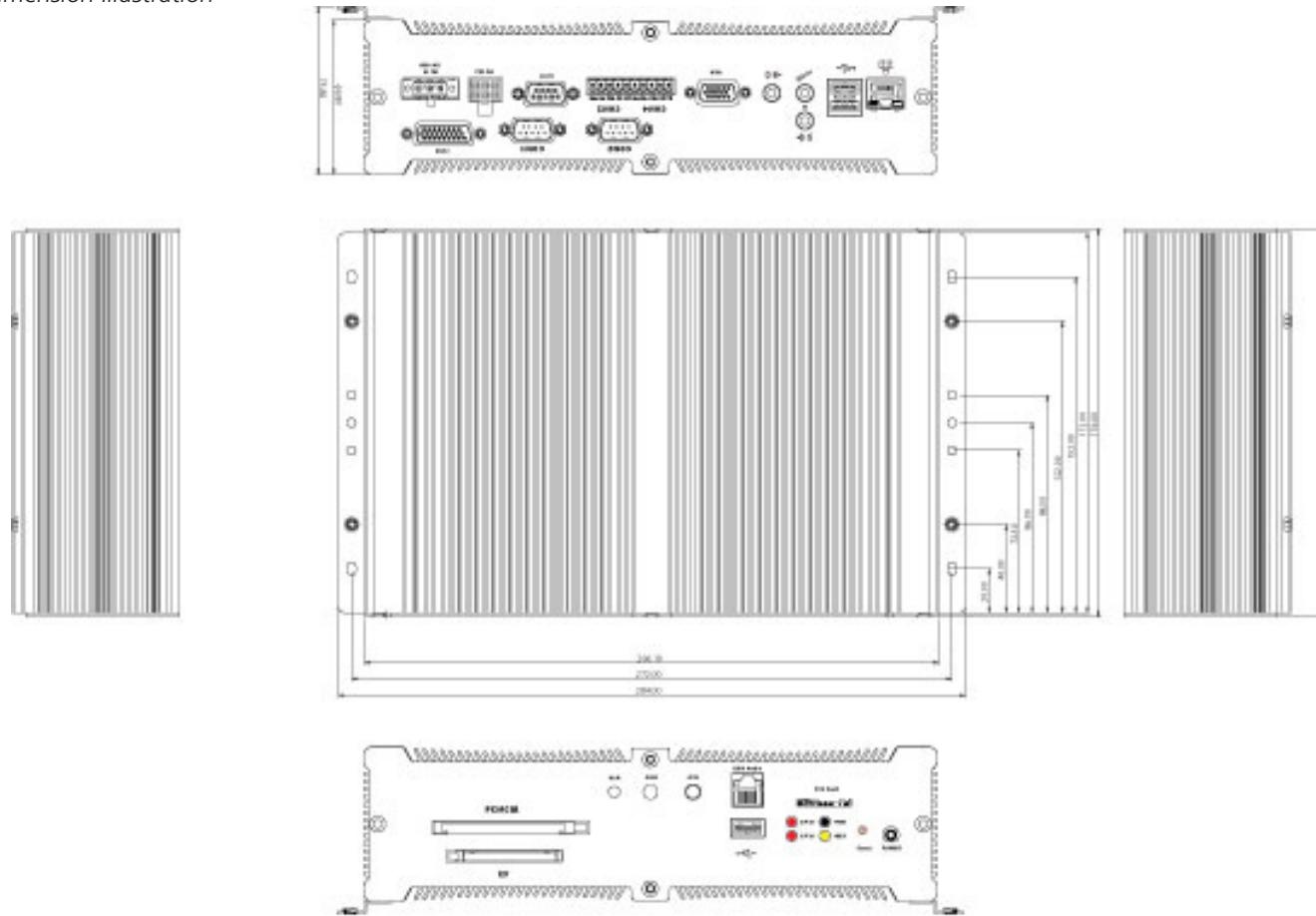
VTC 3300 Power Consumption

Model Name	OS	Memory	Storage	Others	AP
VTC 3300	Win XP	1G	60GB	NAK 3300	K Power + Burning Test
Value	Power Consumption				
Theoretical Current	32.326W				
Real Current One	19~21.5W				
Real Current Two	16~17.5W				
Real Current Three	17.6~18W				

Notes

- * Theoretical Current means R&D designed power consideration with Onboard Devices (Does not consider the add-on devices)
- ** Real Current One means system with Maximum HD/CPU and Memory Loading/Usage under room temperature.
- *** Real Current Two means system with 25% HD/70% CPU and 50% Memory Loading/Usage under room temperature.
- **** Real Current Three means system without running K Power with OS in idle state under room temperature.

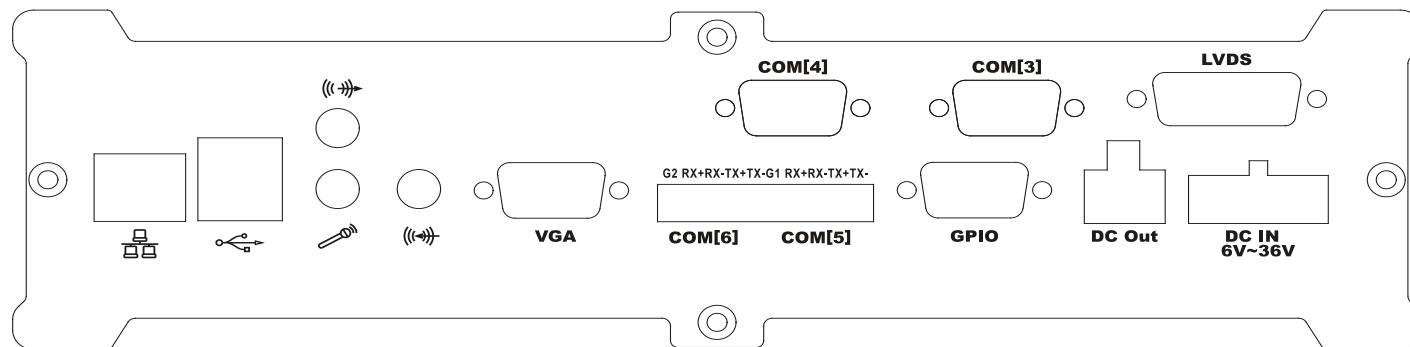
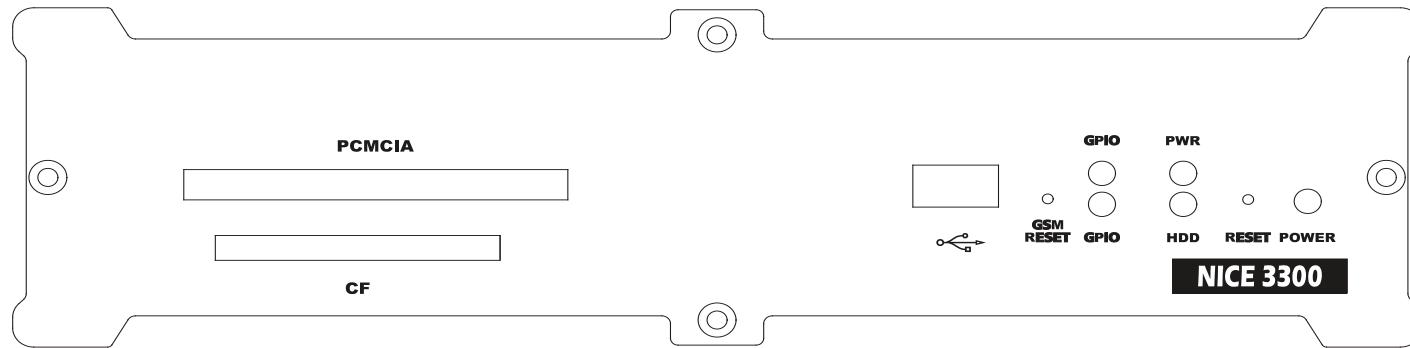
NICE3300 Power Design Feature


Power Ignition Control

Power On/Off Delay Setting

xxx Wendy to provide details

VTC 3300/3220 Dimensions



Dimension Illustration

VTC 3300 Front and Back Layout

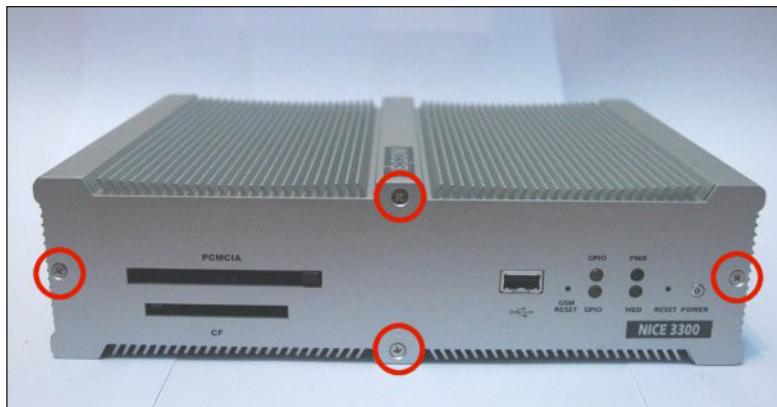
xxx Jay to add callouts

Installing Modules

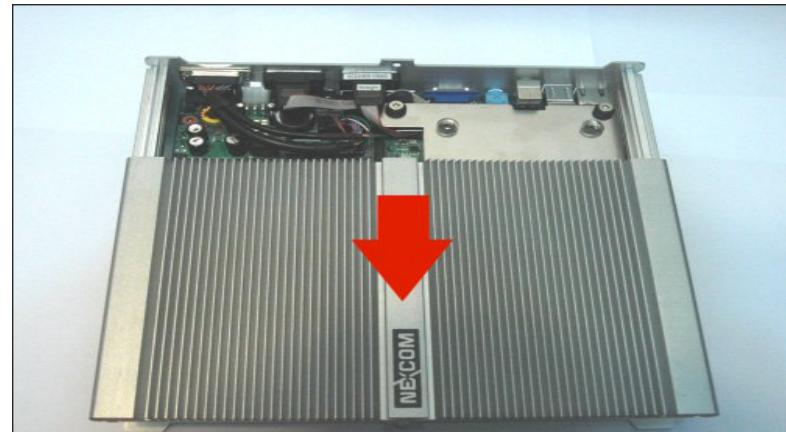
Except for the ICEB 3300 carrier board and the ICES 101 CPU board, VTC 3300 ships without any modules installed. This section provides information on how to install supported modules, which include:

- 2.5" hard disk
- Internal CompactFlash card
- Mini PCI module
- SODIMM

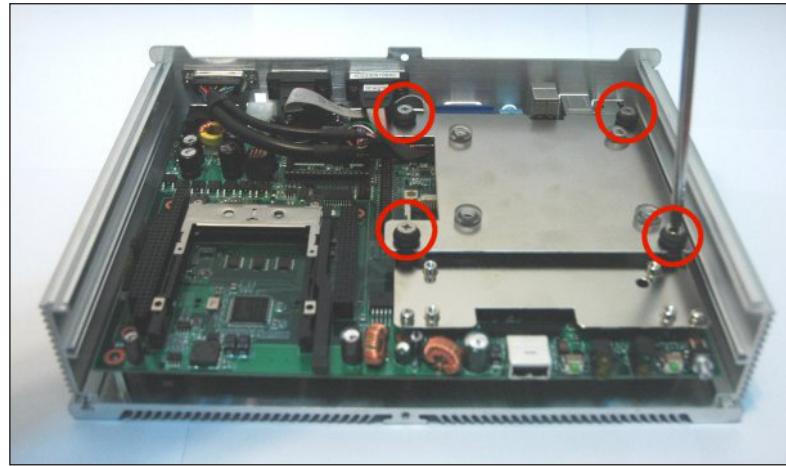
For instructions on how to install the NAK 3300 module, refer to Chapter 5.


Removing the Cover

1. Place the VTC 3300 on a flat surface with the front panel (side with the VTC 3300 logo on the bottom right section) towards you.



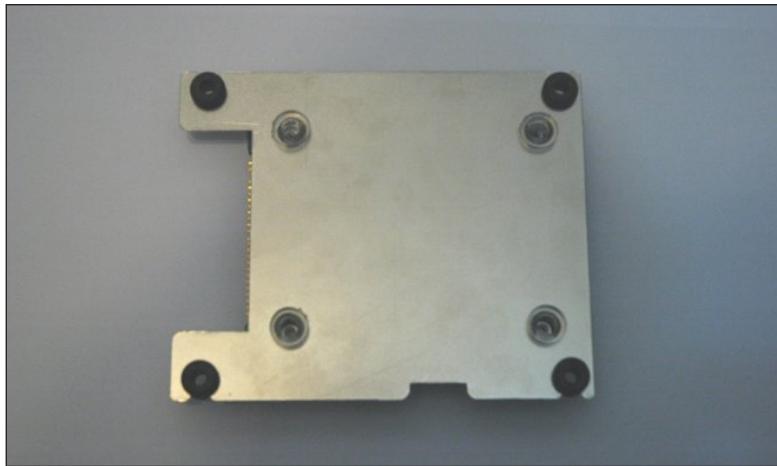
2. Using a Phillips screwdriver, remove the four screws that secure the front panel to the chassis.


3. On the back panel, remove the top screw.
4. Remove the top cover by sliding it towards you until it is released from the rails on both sides.

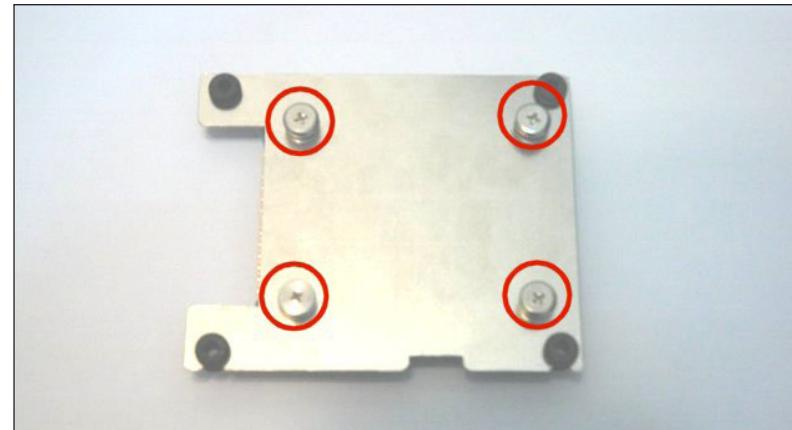
4. Put the top cover and the screws that you removed in a safe place. You will need to put them back after you have finished installing all your modules.

Installing the Hard Disk

1. Locate the hard disk mounting bracket on the board.
2. Remove the four screws that secure the bracket to the board.



3. Lift the bracket from the board, and then set aside with the four screws that you removed.


4. Place your 2.5" hard disk drive on a flat surface with the bottom facing up.

5. Place the mounting bracket on top of the hard disk so that the remaining four screw holes on the bracket align with the screw holes on the hard disk.

6. Secure the hard disk to the bracket using the four I-head bolt screws that are supplied with the VTC 3300 package. You should be able to fasten each screw all the way.

If you are installing an internal CompactFlash card or a mini PCI module, install these other modules first before continuing with the next step. Refer to the next two sections for instructions. After you finish installing these modules, return to this section, and then continue with the next step.

7. Gently turn the mounting bracket over so that the hard disk is on top.

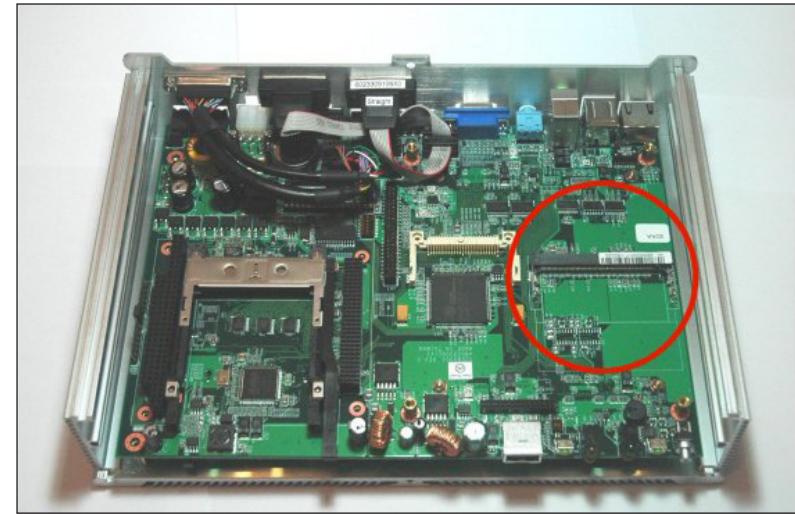
8. Replace the mounting bracket on to the board, ensuring that the screw holes on the bracket are aligned with the screw holes on the board.

9. Secure the mounting bracket to the board using the four screws that you removed in Step 2.

Installing the Internal CF Card

1. Locate the CompactFlash (CF) card slot on the board.

2. Insert the CF card into the socket with the label facing up.



3. Firmly but gently push the CF card into the slot until it is fully seated in the slot.

Installing the Mini PCI Module

1. Locate the mini PCI card slot on the board.

2. Insert the mini PCI card into the slot at a 45-degree angle, and then push it in until the gold-plated connector is seated firmly in the slot.

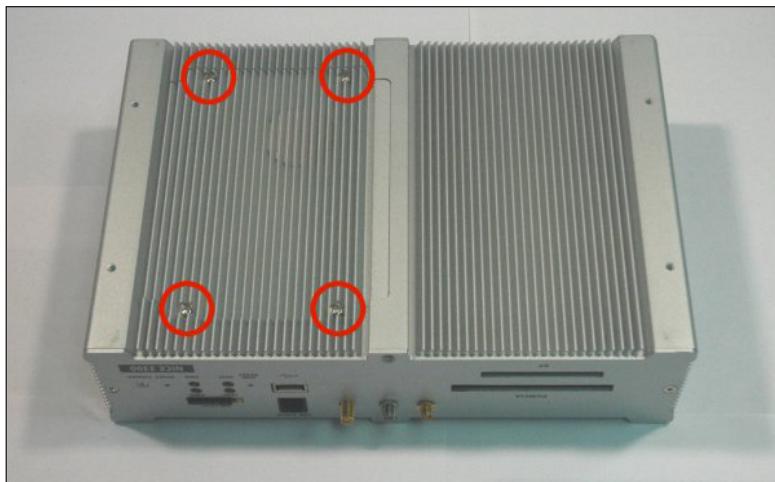
3. With the card still at a 45-degree angle, press it down until the locks on the sides snap into place.

Replacing the Cover

If you are planning to install the NAK 3300 module, install the module first before replacing the chassis cover. For instructions on how to install the NAK 3300 module, refer to Chapter 5.

1. Align the rails on the sides of the cover with the rails on the chassis.
2. Push the cover in until the other end touches the back panel.

3. Secure the cover into the back panel by fastening the top screw.
4. Secure the cover into the front panel using the four screws that you removed when you first took the cover off.


Removing the Heat Sink

1. Place the VTC 3300 chassis on a flat surface with the bottom part facing up.

2. Using a Phillips screwdriver, remove the four screws that secure the heat sink to the chassis.

3. Use a thin, pointed object (for example, a pen) to pry and lift the heat sink from the chassis. Alternatively, hold the heat sink into place, gently turn the chassis over and put it down on a flat surface. Lift the chassis to remove the heat sink.

3. Remove the heat sink, and then put it aside along with the four screws that you removed earlier.

You are now ready to install the ICES 101 module and SODIMM. Note that there are two types of heatsink for the ICES 101 module – an onboard CPU type (C65 and 373) and a socket CPU type (SKT). Make sure you use the correct heatsink for the ICES 101 module that you are installing.

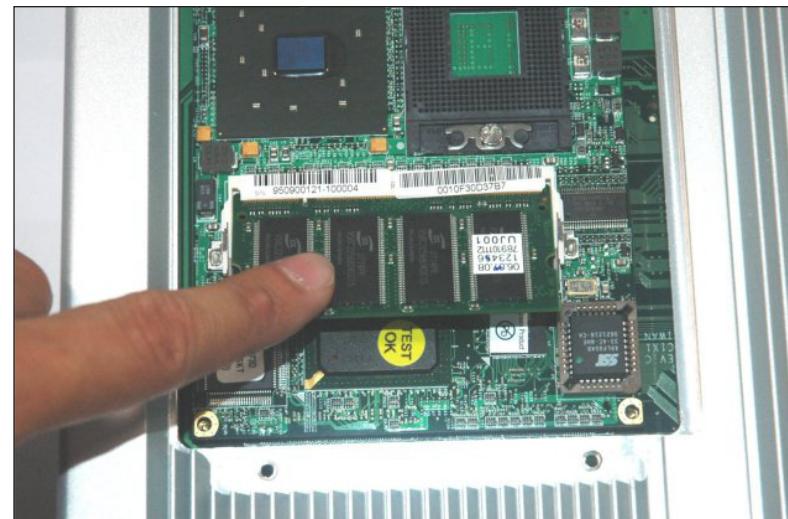
Installing the ICES 101 Module

1. Align the four connectors on the ICES 101 module with the four slots on the carrier board. The connectors are keyed, so there is only one way to insert the module.

2. When all the connectors are aligned, firmly but gently press down the four corners of the ICES 101 module until the connectors are firmly seated in the slots.

3. Secure the module to the carrier board using the four xxx (type of screw/description) screws that are supplied with the VTC 3300 package.

Installing SODIMM


The SODIMM slot is on the ICES 101 board. NEXCOM recommends installing the ICES 101 module before you install SODIMM.

1. Locate the SODIMM slot on the board.

2. Insert the SODIMM into the slot at a 45-degree angle, and then push it in until the gold-plated connector is seated firmly in the slot.

3. With the SODIMM still at a 45-degree angle, press it down until the locks on the sides snap into place.

Replacing the Heat Sink

1. Gently place the heat sink back into its position.

