PISO-730

User Manual

Warranty

All products manufactured by ICP DAS are warranted against
defective materials for a period of one year from the date of
delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent to the
use of this product. ICP DAS reserves the right to change this
manual at any time without notice. The information furnished by
ICP DAS is believed to be accurate and reliable. However, no
responsibility is assumed by ICP DAS for its use, nor for any
infringements of patents or other rights of third parties resulting
from its use.

Copyright
Copyright 1999 by ICP DAS. All rights are reserved.

Trademark
The names used for identification only maybe registered
trademarks of their respective companies.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 1

Tables of Contents

1.

INTRODUGCTION ..ot e e e e e e e s e e e s e s e s e s e s e s e s e s e s e sesesesererererererereresereresesesseaaaas 3
O T = N = 3
1.2 SPECIFICATIONS ...t 4
1.3 ORDER DESCRIPTION......ciiiiiiieee e 5
1.4 PCI DATA ACQUISITION FAMILY ...coiiiiiieiiee e 5
1.5 PRODUCT CHECK LIST it 6

HARDWARE CONFIGURATION . ..ot 7
P2 R = 10 Y\ = X YN 1 ST 7
A 1 (O N @ =T =17 T] VI 8
2.3 INTERRUPT OPERATION. ...ctttttttttttttettssteesseessesseessssssesesesesesssesessseseseseseresesereseserersrererssmrerene 12
2.4 DAUGHTER BOARDS.cetttttttttttttttttteeeeettsseeseesesssessseseseseseseseseseseseseseseresesererererereressresnrernnes 20
2.5 PIN ASSIGNMENT ..ettttiittteeeeeeeteeeesesessssesssessesessesssesssesssesssesnrsrnnes 24

/O CONTROL REGISTER ..o e 26
3.1 HOW TO FIND THE [/O ADDRESScetttiiitiititteieeeeeessesseesesssssssssssssesessssseseserererererererererererene 26
3.2 THE ASSIGNMENT OF I/O ADDRESSceetttitttteiteseeesseeseeseessssssssesesesessssseseserererererererererre 31
3.3 THE I/O ADDRESS MAP....uuuiiiiiiieitttiee e e e et e e e e e e e et e s e e e s e e s aa s e e e e e s eeaba e e eeeseresaaaaeens 32

DEMO PROGRAM. ..., 37
T = (@ T = 11 LSRR 38
4.2 DEMOL ...ttt an e e aeenarrarares 40
G T 0 | =1V (@ T 42
R 5 |1V [1 T 43
A5 DEMOM ... e enaeasaeeseaarrrares 45
A6 DEMODS ...ttt aaaeaeasasenararares 47

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 2

1. Introduction

The PISO-730 provides 32 channels isolated digital 1/0 (16xDI and 16xDO) and 32
channels TTL-level digital I/0 (16xDI and 16xDQ). The board interface to field logic
signals, eliminating ground-loop problems and isolating the host PC from damaging
voltages. Its isolated 1/0O channels provide up to 2,500Vdc of protection.

The PISO-730 has one 37-pin D-type connector and two 20-pin flat-cable
connectors. The flat-cable can be connected to ADP-20/PCI adapter. The adapter can be
fixed on the chassis. It can be installed in a 5V PCI slot and can support truly “Plug and
Play”.

1.1 Features

* PCIBus

e 32 isolated DIO channels (16xDI and 16xDO)

e 32 TTL-level DIO channels (16xDI and 16xDO)

» DC/DC converter build-in

« One DB-37 D-type connector for isolated input and output

» Two separate 20-pin connectors for non-isolated input and output
e Up to 2500Vdc isolated voltage

e Interrupt source: 2 channels

e Connects directly to DB-24PR, 24POR, DB-24C, DB-16P, DB-16R
e SMD, short card, power saving

» Automatically detected by Windows 95/98/NT

* No base address or IRQ switches to set

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 3

1.2 Specifications

Isolated DIO channels

Optical isolated input channel
Channel NO.: 16 digital inputs
Type: Isolated current input
Isolation voltage: 2,500Vdc

Input voltage: 3.5-30Vdc

Input impedance: 1.2KQ/1W
Response time: 10KHz (Max.)
Optical isolated output channel
Channel NO.: 16 digital outputs
Output voltage: open-collector 5-30Vdc
Isolation voltage: 2,500Vdc

Sink current: 200mA (Max.)
Response time: 10KHz (Max.)

TTL-level DIO channels

TTL-level input channel

Channel NO.: 16 digital input

Input voltage level: (TTL compatible)
Vi: 0.8V (Max.)

ViH: 2.4V (Min.)

TTL-level output channel

Channel NO.: 16 digital output
Driver capacity: (TTL compatible)
loL: 8 mA (sink)

lon: 0.4 mA (source)

General specifications

Operation Temp.: 0-50°C
Storage Temp.: -20°C to 70°C
Humidity: 0-90%, non-condensing
Dimensions: 180mmx105mm
Power consumption: 640mA

PISO-730 User Manual (Ver. 1.0,12/30/99)

4

1.3 Order Description
« PISO-730: PCI bus 32 channel isolated digital 1/0 board

1.3.1 Options

» DB-24PR, DB-24PR: 24 channels power relay board

* DB-24POR: 24 channel PhotoMos output board

» DB-24C: 24 channel open-collector output board

» DB-16P: 16 channel isolated D/l board

e DB-16R: 16 channel relay board

» ADP-20/PCI: Extender, 20-pin header to 20-pin header for PCI bus 1/0

boards

e DN-37: 1/0O connector block with DIN-Rail mounting and 37-pin D-type
connector

» DB-37: 37-pin D-type connector pin to pin screw terminal for any 37 pin
D-type connector of 1/0 board

» NAPPCI/win: DLLs for Windows 95/98

* NAPPCIl/wnt: DLLs for Windows NT 4.0

* NAPVIEW/1: LabVIEW driver for Windows 95/98

* NAPVIEW/2: LabVIEW driver for Windows NT

1.4 PCI Data Acquisition Family

We provide a family of PCI-BUS data acquisition cards. These cards can be

divided into three groups as follows:

1. PCl-series: first generation, isolated or non-isolated cards
PCI-1002/1202/1800/1802/1602: multi-function family, non-isolated
PCI-P16R16/P16C16/P16POR16/P8R8: D/1/O family, isolated
PCI-TMC12: timer/counter card, non-isolated

2. PIlO-series: cost-effective generation, non-isolated cards
P10-823/821: multi-function family
P10-D144/D96/D64/D56/D48/D24: D/1/O family
PIO-DA16/DA8/DA4: D/A family

3. PISO-series: cost-effective generation, isolated cards
P1SO-813: A/D card
PISO-P32C32/P64/C64: D/1/0 family
PISO-P8R8/P8SSRBAC/P8SSR8DC: D/I/0 family
P1SO-730: D/1/O card
PISO-DA2: D/A card

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 5

1.5 Product Check List

In addition to this manual, the package includes the following items:
» one piece of PISO-730 card
» one piece of company floppy diskette or CD
» one piece of release note
It is recommended to read the release note firstly. All importance information
will be given in release note as follows:
1. where you can find the software driver & utility
2. how to install software & utility
3. where is the diagnostic program
4. FAQ

Attention!

If any of these items is missing or damaged, contact the dealer from whom you
purchased the product. Save the shipping materials and carton in case you want to ship
or store the product in the future.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 6

2. Hardware configuration

2.1 Board Layout

| - | -
Q A
% wn
= Q
\'
w
o
-
Q o
w S
C =3
) e =
0}
-
N
§ o o
— ® 29T
2 |l
o) O O
o ~N ©
@) —
C Z
_| N N
N o N o
O000000000 0 0000000000 0
O000000000 O O000000000 O
o9 > jodey >
= b w - o N

CONL1.: 16 channels isolated D/l and 16 channels isolated D/O
CONZ2: 16 channels TTL-level (non-isolated) D/I

CONaS: 16 channels TTL-level (non-isolated) D/O

JP1: Reserved

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 7

2.2 1/O Operation

2.2.1 Non-isolated DO Port Architecture (CON3)

When the PC is power-up, all operations of non-isolated DO states are clear to
low-state. The RESET\ signal is used to clear non-isolated DO states. Refer to Sec. 3.3.1

for more information about RESET\ signal.

e The RESET\ s in Low-state = all non-isolated DO states are clear to low state

The block diagram of non-isolated DO is given as follows:

RESET\
:

Data clear CON3
—— | input Latch ——»
_|_r—> Clock input

D/O buffer CKT

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 8

2.2.2 Non-isolated DI Port Architecture (CON2)

When the PC is power-up, all operations of non-isolated DI port are disable. The
enable/disable of non-isolated DI port is controlled by the RESET\ signal. Refer to Sec.
3.3.1 for more information about RESET\ signal.

e The RESET\ is in Low-state = all non-isolated DI operation is disable
e The RESET\ is in High-state - all non-isolated DI operation is enable

RESET\

:

Data

disable

Buffer input

Clock input

D/l buffer CKT

CON2

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 9

2.2.3 Isolated DO Port Architecture (CON1)

When the PC is power-up, all operations of isolated DO states are clear to low-state.
The RESET\ signal is used to clear isolated DO states. Refer to Sec. 3.3.1 for more
information about RESET\ signal.

e The RESET\ is in Low-state = all isolated DO states are clear to low state
Each eight open-collector output channels share EO.COM(IDO0~IDO7 use

EO.COML1 and IDO8~IDO15 use EO.COM?2)
The block diagram of isolated DO is given as follows:

EO.COM1

IDOO ih%
LOAD 5

IDO1 ’%
LOAD o

IDO7 %
LOAD o

External
Power supply

External Internal of PISO-730

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 10

2.2.4 Isolated DI Port Architecture (CON1)

The PISO-730 provides 16 channels isolated digital input. Each of the isolated digital
input accepts voltages from 3.5-30Vdc. Each eight input channels share one external
common end point. (IDIO~IDI7 use E1.COM1 and IDI8~IDI15 use EI.COM2)

Vcce
IDI0 1.2K/1W
o NV
IDI1T 1.2K/1W
o o AVAVAY
) b
]
External power supply —
3.5-30 Vdc
IDI7 1.2K/1W ‘
o NV
L
El.COM1
External Internal of PISO-730 _

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 11

2.3 Interrupt Operation

There are two interrupt sources in PISO-730. These two signals are named as
INT_CHAN_O and INT_CHAN_1. Their signal sources are given as follows:

INT_CHAN_0: DIO
INT_CHAN_1: DI1

If only one interrupt signal source is used, the interrupt service routine does not
have to identify the interrupt source. Refer to DEMO3.C and DEMOA4.C for more
information.

If there are more than one interrupt source, the interrupt service routine has to
identify the active signals as follows: (refer to DEMO5.C)

1. Read the new status of all interrupt signal sources(refer to Sec 3.3.5)
Compare the new status with the old status to identify the active signals
If INT_CHAN_O is active, service it

If INT_CHAN_1 is active, service it

Update interrupt status

o bk 0N

Note: if the interrupt signal is too short, the new status may be as same as old
status. In that condition the interrupt service routine can not identify which
interrupt source is active. So the interrupt signal must be hold_active long enough
until the interrupt service routine is executed. This hold_time is different for
different O.S. The hold_time can be as short as micro-second or as long as second.
In general, 20ms is enough for all O. S.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 12

2.3.1 Interrupt Block Diagram of PISO-730

INT_CHAN_O
—(— ——
- INT_CHAN_1
INT\ i
. 0
Level _trigger 4@@
0
initial_low
active_high

The interrupt output signal of PISO-730, INT\ is level-trigger &
Active_Low. If the INT\ generate a low-pulse, the PISO-730 will interrupt the PC
once a time. If the INT\ is fixed in low level, the PISO-730 will interrupt the PC
continuously. So the INT_CHAN_0/1 must be controlled in a pulse_type signals.
They must be fixed in low level state normally and generated a
high_pulse to interrupt the PC.

The priority of INT_CHAN_O0/1 is the same. If all these two signals are active at
the same time, then INT\ will be active only once a time. So the interrupt service routine
has to read the status of all interrupt channels for multi-channel interrupt. Refer to Sec.
2.6.7 for more information.

DEMOS5.C - for multi-channel interrupt source
If only one interrupt source is used, the interrupt service routine doesn’t have to
read the status of interrupt source. The demo program DEMO3.C and DEMO4.C are

designed for single-channel interrupt demo as follows:

DEMO3.C & DEMO4.C - for INT_CHAN_O only

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 13

2.3.2 INT_CHAN_O

INT_CHAN_0 DIO

—
NI

Inverted/Noninverted select
INVO

Enable/Disable select
ENO

The INT_CHAN_0 must be fixed in low level state normally and
generated a high_pulse to interrupt the PC.

The ENO can be used to enable/disable the INT_CHAN_0 as follows: (refer to
Sec. 3.3.4)

ENO=0->INT_CHAN_0=disable
ENO=1->INT_CHAN_0=enable

The INVO can be used to invert/non-invert the DIO as follows: (Refer to Sec.
3.3.6)

INVO=0->INT_CHAN_O=invert state of DIO
INVO=1->INT_CHAN_O0=non-invert state of DIO

Refer to demo program for more information as follows:
DEMO3.C - for INT_CHAN_O (initial high)
DEMOA4.C - for INT_CHAN_O (initial low)
DEMO5.C - for multi-channel interrupt source

NOTE: Refer to Sec. 2.3.4 & Sec. 2.3.5 for active high-pulse
generation.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 14

2.3.3 INT_CHAN_1

INT_CHAN_1 DI1

ﬁ
Li

Inverted/Noninverted select
INV1

Enable/Disable select
EN1

The INT_CHAN_1 must be fixed in low level state normally and
generated a high_pulse to interrupt the PC.

The EN1 can be used to enable/disable the INT_CHAN 1 as follows: (refer to
Sec. 3.3.4)

EN1=0->INT_CHAN_1=disable

EN1=1->INT_CHAN_1=enable

The INV1 can be used to invert/non-invert the DI1 as follows: (Refer to Sec.
3.3.6)

INV1=0->INT_CHAN_1=invert state of DI1

INV1=1->INT_CHAN_1=non-invert state of DI1

Refer to demo program for more information as follows:
DEMO3.C - for INT_CHAN_O (initial high)
DEMOA4.C - for INT_CHAN_O (initial low)
DEMO5.C - for multi-channel interrupt source

NOTE: Refer to Sec. 2.3.4 & Sec. 2.3.5 for active high-pulse
generation.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 15

2.3.4 Initial_high, active_low Interrupt source

If the DIO is an initial_high, active_low signal, the interrupt service routine
should use INVO to invert/non-invert the DIO for high_pulse generation as follows:
(Refer to DEMO3.C and the DI1 is similarly)

Initial set:
now_int_state=1; /* initial state for DIO */
outportb(wBase+0x2a,0); /* select the inverted DIO */

void interrupt irqg_service()

i f (now_int_state==1) /* now DIO is changed to LOW */(a)
{ /* --> | NT_CHAN_0=! DI 0=HI GH now */
COUNT _L++; /* find a LOW pul se (DI 0) */

I f((inport(wBase+7)&1)==0)/* the DIO is still fixed in LOW */
{ /* > need to generate a high_pul se */
out port b(wBase+0x2a, 1);/* I NVO sel ect the non-inverted input */(b)

/* | NT_CHAN_0=DI O=LOW - - > */
/* I NT_CHAN O generate a hi gh_pul se */

now_ i nt _st at e=0; /* now DI 0=LOW */
}
el se now_ i nt_state=1; /* now DI O=H GH */
/* don’t have to generate high_pulse */
}
el se /* now DIO is changed to H GH */(c)
{ /* --> | NT_CHAN _0=Dl O=H GH now */
COUNT _H++; /* find a H GH pul se (DI 0) */
If((inport(wBase+7)&1l)==1)/* the DIO is still fixed in H GH */
{ /* need to generate a high_pul se */
out port b(wBase+0x2a, 0);/* I NVO select the inverted input */(d)
/* | NT_CHAN_O=! DI 0O=LOW - - > */
/* I NT_CHAN O generate a hi gh_pul se */
now_ i nt st at e=1; /* now DI O=HI GH */
el se now_ i nt_state=0; /* now DI 0=LOW */

/* don’t have to generate high_pulse */

}
if (wWrqg>=8) outportb(A2_8259, 0x20);
out port b(Al_8259, 0x20) ;

@ (b) © (d)

DIO

INVO

INT_CHAN_O

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 16

2.3.5 Initial_low, active _high Interrupt source

If the DIO is an initial_low, active_high signal, the interrupt service routine
should use INVO to invert/non-invert the DIO for high_pulse generation as follows:
(Refer to DEMOA4.C and the DI1 is similarly)

Initial set:
now_int_state=0; /* initial state for DIO */
outportb(wBase+0x2a,1); [* select the non-inverted DIO */

void interrupt irqg_service()

i f (now_int_state==1) /* now DIO is changed to LOW */(c)
{ /* --> | NT_CHAN_0=! DI 0=HI GH now */
COUNT _L++; /* find a LOW pul se (DI 0) */

I f((inport(wBase+7)&1)==0)/* the DIO is still fixed in LOW */
{ /* > need to generate a high_pul se */
out port b(wBase+0x2a, 1);/* I NVO sel ect the non-inverted input */(d)

/* | NT_CHAN_0=DI O=LOW - - > */
/* I NT_CHAN O generate a hi gh_pul se */

now_ i nt _st at e=0; /* now DI 0=LOW */
}
el se now_ int_state=1; /* now DI O=HI GH */
/* don’t have to generate high_pulse */
}
el se /* now DIO is changed to H GH */(a)
{ /* --> | NT_CHAN _0=Dl O=H GH now */
COUNT _H++; /* find a Hi gh_pul se (DI 0) */
If((inport(wBase+7)&1l)==1)/* the DIO is still fixed in H GH */
{ /* need to generate a high_pul se */
out port b(wBase+0x2a, 0);/* I NVO select the inverted input */ (b)
/* | NT_CHAN_O=! DI 0O=LOW - - > */
/* I NT_CHAN O generate a hi gh_pul se */
now_ i nt st at e=1; /* now DI O=HI GH */
el se now_ i nt_state=0; /* now DI 0=LOW */

/* don’t have to generate high_pulse */

}
if (wWrqg>=8) outportb(A2_8259, 0x20);
out port b(Al_8259, 0x20) ;

(CY) (b) ©) (d)

DIo

INVO

INT_CHAN_O

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 17

2.3.6 Multiple Interrupt Source

Assume: DIO is initial Low, active High
DI1 is initial High, active Low

as follows:
DIO
4
—
DI1
DIO & DI1 are DIO & DI1 are
i return to
active at the «—
i normal at the
same time _
same time
DI1 is return) DI is atcive
to normal

Refer to DEMO5.C for source program. All these three falling-edge & rising-edge can
be detected by DEMO5.C.

Note: when the interrupt is active, the user program has to identify the active
signals. These signals may be active at the same time. So the interrupt service
routine has to service all active signals at the same time.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 18

Initial setting:

outportb(wBase+0x2a,invert);

now_int_state=0x2; /* Initial state: DIO at low level, DI1 at high level */
invert=0x1; /* non-invert DI0 & invert DI1 */

void interrupt irqg_service()

{
new i nt _stat e=i nport b(wBase+7) &0x03;
int_c=new_int_statenow_int_state;
if ((int_c&x1)!=0)
{
if ((new_int_state&0x01)!=0)
{
CNT_H1++;
}
el se
{
CNT_L1++;
}
i nvert =i nvert~1;
}
if ((int_c&0x2)!=0)
{

if ((new_int_state&0x02)!=0)

{
CNT_H2++;
}
el se
{
CNT_L2++;
}
i nvert=i nvert”"2;

}

now i nt _state=new_i nt_state;

out port b(wBase+0x2a, i nvert);

if (Wrqg>=8) outportb(A2_8259, 0x20);
out port b(Al_8259, 0x20);

}

~ Y~~~
* * kX

/*

/*

/*

/*

read all interrupt state */
conpare which interrupt */
si gnal be change */
INT_CHAN O is active */

now DI 0 change to high */

now DI 0 change to | ow */

to generate a high pulse */

now DI 1 change to high */

now DI 1 change to | ow */

to generate a high pulse */

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 19

2.4 Daughter Boards

2.4.1 DB-16P Isolated Input Board

The DB-16P is a 16-channel isolated digital input daughter board. The optically
isolated inputs of the DB-16P consist of a bi-directional photo-coupler with a resistor for
current sensing. You can use the DB-16P to sense DC signal from TTL levels up to 24V
or use the DB-16P to sense a wide range of AC signals. You can use this board to
isolated the computer from large common-mode voltage, ground loops and transient
voltage spike that often occur in industrial environments.

P1SO-730 égg%g

V+

— photo-Isolated
PISO-730
I [|
\ /
20Pin cable
] DB-16P
[
_— |
O O

AC or DC Signal
0V to 24V

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 20

2.4.2 DB-16R Relay Board

The DB-16R is a 16-channels relay output board, consists of 16 form C relays for
efficient switch of load by programmed control. The relay are energized by applying
12V/24V voltage signal to the appropriated relay channel on the 20-pin flat connector.
There are 16 enunciator LEDs for each relay, light when their associated relay is
activated.

From C Relay
ﬁ\ > Normal Open
\\O \ Normal Close

Com.

20Pin cable ’ D D D
D DDB-lGR

o Note:

PISO-730 Channel: 16 From C Relay

Relay: Switching up to 0.5A at 110ACV
or 1A at 24DCV

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 21

2.4.3 DB-24PR, DB-24POR, DB-24C

DB-24PR 24*power relay, 5A/250V

DB-24POR | 24*photoMOS relay, 0.1A/350VAC

DB-24C 24*open collector, 100mA per channel, 30V max.

The DB-24PR, is a 24-channel power relay output board, consists of 8 form C and
16 form A electromechanical relays for efficient switching of load programmed control.
The contact of each relay can control a 5A load at 250ACV/30VDCV. The relay is
energized by applying a 5 voltage signal to the appropriate relay channel on the 20-pin
flat cable connector (just used 16 relays) or 50-pin flat cable connector (OPTO-22
compatible, for DIO-24 series). 24 enunciator LEDs, one for each relay, light when their
associated relay is activated. To avoid overloading your PC’ s power supply, this board
needs a +12VDC or +24VDC external power supply.

ﬁ\ Normal Open
\\ Form A Relay

Com.

%PISO-?SO |:| |:| |:| |:|

20-pin header
50-pin header

Note:

50-Pin connector (OPTO-22 compatible), for DIO-24, D10-48, D10-144,
P10-D144, PIO-D96, P10-D56, PIO-D48, PIO-D24

Channel: 16 Form A Relays, 8 Form C Relay

Relay: switching up to 5A at 110ACV / 5A at 30DCV

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 22

2.4.4 Daughter Board Comparison Table

20-pin flat-cable 50-pin flat-cable DB-37

header header header
DB-37 No No Yes
DN-37 No No Yes
ADP-37/PClI No Yes Yes
ADP-50/PCI No Yes No
DB-24P No Yes No
DB-24PD No Yes Yes
DB-16P8R No Yes Yes
DB-24R No Yes No
DB-24RD No Yes Yes
DB-24C Yes Yes Yes
DB-24PR Yes Yes No
Db-24PRD No Yes Yes
DB-24POR Yes Yes Yes
DB-24SSR No Yes Yes

NOTE: The PISO-730 has two 20-pin flat-cable header, and one 37 pin D-type

connector

PI1SO-730 User Manual (Ver. 1.0,12/30/99) -----

23

2.5 Pin Assignment

2.5.1 Isolated I/O connector

CONL1.: 37 pin of D-type female connector

Pin No. Description Pin No Description
1 IDIO 20 IDI1
2 IDI2 21 IDI3
3 IDI4 22 IDI5
4 IDI6 23 IDI7
5 IDI8 24 IDI9
6 IDI10 25 IDI11
7 IDI12 26 IDI13
8 IDI14 27 IDI15
9 EI.COM1 28 EI.COM2
10 EO.COM1 29 IGND
11 IDOO 30 IDO1
12 IDO2 31 IDO3
13 IDO4 32 IDO5
14 IDO6 33 IDO7
15 IDO8 34 IDO9
16 IDO10 35 IDO11
17 IDO12 36 IDO13
18 IDO14 37 IDO15
19 EO.COM2

2.5.2 JP1

2

6 8

JP1 O O
0O O

5 7

1

O O+

w

Note: Reserved

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 24

2.5.3 TTL-level I/O connector

CON2: 20-pin of flat-cable connector

Pin no. Description Pin no. Description
1 DIO 2 DI1
3 DI2 4 DI3
5 DI4 6 DI5
7 DI6 8 DI7
9 DI8 10 DI9
11 DI10 12 DI11
13 DI12 14 DI13
15 DI14 16 DI15
17 D.GND 18 D.GND
19 +5V 20 +12V
CONS: 20-pin of flat-cable connector
Pin no. Description Pin no. Description
1 DO0 2 DO1
3 DO2 4 DO3
5 DO4 6 DO5
7 DO6 8 DO7
9 DO8 10 D09
11 D010 12 DO11
13 D012 14 DO13
15 D014 16 DO15
17 D.GND 18 D.GND
19 +5V 20 +12V

All signals are TTL compatible

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 25

3. 1/0O Control Register

3.1 How to Find the I/O Address

The plug & play BIOS will assign a proper 1/0 address to every PIO/PISO series
card in the power-up stage. The fixed IDs of PIO/PISO series card are given as follows:

 Vendor ID = E159
 Device ID =0002

The sub 1Ds of P1SO-730 are given as follows:
e Sub-vendor ID=80
e Sub-device ID =08
e Sub-auxID =40

We provide all necessary functions as follows:

1. PIO_Driverlnit(&wBoard, wSubVendor, wSubDevice, wSubAux)

2. P10O_GetConfigAddressSpace(wBoardNo,*wBase,*wlrq, *wSubVendor,
*wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)

3. Show_PIO_PISO(wSubVendor, wSubDevice, wSubAux)

All functions are defined in PIO.H. Refer to Chapter 4 for more information. The
important driver information is given as follows:
1. Resource-allocated information:
» wBase : BASE address mapping in this PC
» wirg: IRQ channel number allocated in this PC
2. PIO/PISO identification information:
» wSubVendor: subVendor ID of this board
» wSubDevice: subDevice ID of this board
o WSubAux: subAux ID of this board
3. PC’s physical slot information:
» wSlotBus: hardware slot ID1 in this PC’s slot position
» wSlotDevice: hardware slot ID2 in this PC’s slot position
The utility program, P1O_PISO.EXE, will detect & show all PIO/PISO cards
installed in this PC. Refer to Sec. 4.1 for more information.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 26

3.1.1 PIO _Driverlnit

P10 _Driverlnit(&wBoards, wSubVendor,wSubDevice,wSubAux)
e wBoards=0to N -> number of boards found in this PC

* wSubVendor - subVendor ID of board to find
* wSubDevice - subDevice ID of board to find
e WSubAux - subAux ID of board to find

This function can detect all PIO/PISO series card in the system. It is implemented
based on the PCI plug & play mechanism-1. It will find all PIO/PISO series cards
installed in this system & save all their resource in the library.

Sample program 1: find all PISO-730 in this PC

wSubVendor=0x80; wSubDevice=8; wSubAux=0x40; /* for PISO-730 */
wRetVal=PIO_Driverlnit(&wBoards, wSubVendor,wSubDevice,wSubAux);
printf(""Threr are %d PISO-730 Cards in this PC\n",wBoards);

[* step2: save resource of all PISO-730 cards installed in this PC */

for (i=0; i<wBoards; i++)
{
P10_GetConfigAddressSpace(i,&wBase,&wIrq,&wID1,&wID2,&wID3,

&wID4,&wID5);

printf(*\nCard_%d: wBase=%x, wlrqg=%x", i,wBase,wlrq);
wConfigSpace[i][0]=wBaseAddress; /* save all resource of this card */
wConfigSpace[i][1]=wIrq; /* save all resource of this card */

}

Sample program 2: find all PIO/PISO in this PC(refer to Sec. 4.1 for more information)

wRetVal=PIO_Driverlnit(&wBoards,0xff,0xff,0xff); /*find all PIO_PISO*/
printf("\nThrer are %d PIO PISO Cards in this PC', wBoards);
if (wBoards==0) exit(0);

Printf("\n-c----mmmm e "),
for(i=0; i<wBoards; i ++)

{
Pl O _Get Confi gAddr essSpace(i, &wBase, &M r q, &SubVendor ,
&wSubDevi ce, &SubAux, &Sl ot Bus, &SI ot Devi ce) ;

printf("\nCard_%d: wBase=%, WM r q=%, subl D=[%, %, %] ,
Slotl D=[%, %] ", i, wBase, W r q, wSubVendor , wSubDevi ce,
wSubAux, wSl ot Bus, wSl ot Devi ce) ;

printf(" -->");

ShowPi oPi so(wSubVendor, wSubDevi ce, wSubAux) ;

}

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 27

The sub-1Ds of PIO/PISO series card are given as follows:

PIO/PISO series card | Description Sub_vendor | Sub_device | Sub_ AUX
PIO-D144 144 * D/1/O 80 01 00
PIO-D96 96 * D/I/O 80 01 10
PIO-D64 64 * D/1/O 80 01 20
PIO-D56 24* D/1/O + 80 01 40
16*D/I + 16*D/O
PIO-D48 48*D/1/0 80 01 30
PIO-D24 24*D/1/0 80 01 40
P10-823 Multi-function 80 03 00
P10-821 Multi-function 80 03 10
PIO-DA16 16*D/A 80 04 00
PIO-DA8 8*D/A 80 04 00
PIO-DA4 4*D/A 80 04 00
PISO-C64 64 * isolated D/O | 80 08 00
PISO-P64 64 * isolated D/I 80 08 10
PISO-P32C32 32+ 32 80 08 20
PISO-P8R8 8* isolated D/I + 80 08 30
8 * 220V relay
PISO-P8SSR8AC 8* isolated D/I + 80 08 30
8 * SSR /AC
PISO-P8SSR8DC 8* isolated D/I + 80 08 30
8 * SSR /DC
PISO-730 16*DI + 16*D/O + | 80 08 40
16* isolated D/I +
16™* isolated D/O
PISO-813 32 * isolated A/D | 80 0A 00
PISO-DA2 2 * isolated D/A 80 0B 00

Note: the sub-1Ds will be added more & more without notice. The user can refer to

P10O.H for the newest information.

PI1SO-730 User Manual (Ver. 1.0,12/30/99)

----- 28

3.1.2 PIO_GetConfigAddressSpace

P10_GetConfigAddressSpace(wBoardNo,*wBase,*wlrqg, *wSubVendor,
*wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)
e wBoardNo=0to N - totally N+1 boards found by PIO_Drivelnit(....)

* wBase -> base address of the board control word

e wirg -> allocated IRQ channel number of this board
e wSubVendor -> subVendor ID of this board

* wSubDevice -> subDevice ID of this board

e WSubAux -> subAux ID of this board

e wSlotBus -> hardware slot ID1 of this board

e wSlotDevice -> hardware slot ID2 of this board

The user can use this function to save resource of all PIO/PISO cards installed in
this system. Then the application program can control all functions of PIO/PISO series
card directly.

The sample program source is given as follows:

[* stepl: detect all PISO-730 cards first */

wSubVendor=0x80; wSubDevice=8; wSubAux=0x40; /* for PISO-730 */
wRetVal=PIO_Driverlnit(&wBoards, wSubVendor,wSubDevice,wSubAux);
printf("Threr are %d PISO-730 Cards in this PC\n",wBoards);

[* step2: save resource of all PISO-730 cards installed in this PC */

for (i=0; i<wBoards; i++)
{
P1O_GetConfigAddressSpace(i,&wBase,&wIrq,&t1,&t2,&t3,&t4,&t5);
printf("\nCard_%d: wBase=%x, wlrqg=%x", i,wBase,wIrq);

wConfigSpace[i][0]=wBaseAddress; /* save all resource of this card */
wConfigSpace[i][1]=wIrg; /* save all resource of this card */
}
[* step3: control the PISO-730 directly */
wBase=wConfigSpace[0][0];/* get base address the card_0 */
outport(wBase,1); /* enable all D/1/O operation of card_0 */
wBase=wConfigSpace[1][0];/* get base address the card_1 */
outport(wBase,1); /* enable all D/1/O operation of card_1 */

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 29

3.1.3 Show_PIO_PISO

Show_PI1O_PISO(wSubVendor,wSubDevice,wSubAux)

e wSubVendor - subVendor ID of board to find

e wSubDevice = subDevice ID of board to find

¢ WSubAux - subAux ID of board to find

This function will show a text string for this special sublDs. This text string is the same
as that defined in P10.H

The demo program is given as follows:

wRetVal=PIO_Driverlnit(&wBoards,0xff,0xff,0xff); /*find all PIO_PISO*/
printf("\nThrer are %d PIO PISO Cards in this PC', wBoards);
if (wBoards==0) exit(0);

Printf("\n-c----mmmm e "),
for(i=0; i<wBoards; i ++)

{
Pl O _Get Confi gAddr essSpace(i, &wBase, &M r q, &SubVendor ,
&wSubDevi ce, &SubAux, &S| ot Bus, &SI ot Devi ce) ;

printf("\nCard_%d: wBase=%, WM r q=%, subl D=[%, %, %],
Slotl D=[%, %] ", i, wBase, W r q, wSubVendor , wSubDevi ce,
wSubAux, wSl ot Bus, wSl ot Devi ce) ;

printf(" -->");

ShowPi oPi so(wSubVendor, wSubDevi ce, wSubAux) ;

}

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 30

3.2 The Assignment of I/O Address

The plug & play BIOS will assign the proper I/O address to PIO/PISO series card.
If there is only one PIO/PISO board, the user can identify the board as card_O. If there
are two PIO/PISO boards in the system, the user will be very difficult to identify which
board is card_0 ? The software driver can support 16 boards max. Therefore the user
can install 16 boards of PIO/PSIO series in one PC system. How to find the card 0 &
card_1°?
It is difficult to find the card NO. The simplest way to identify which card is
card_0 is to use wSlotBus & wSlotDevice as follows:
1. Remove all PISO-730 from this PC
Install one PISO-730 into the PC’s PCI_slotl, run PIO_PISO.EXE & record the
wSlotBusl & wSlotDevicel
3. Remove all PISO-730 from this PC
4. Install one PISO-730 into the PC’s PCI_slot2, run PIO_PISO.EXE & record the
wSlotBus2 & wSlotDevice2
5. repeat (3) & (4) for all PCI_slot?, record all wSlotBus? & wSlotDevice?
The records may be as follows:

PC’s PCI slot wSlotBus wSlotDevice
Slot 1 0 0x07

Slot 2 0 0x08

Slot 3 0 0x09

Slot 4 0 0x0A
PCI-BRIDGE

Slot 5 1 0x0A

Slot 6 1 0x08

Slot 7 1 0x09

Slot 8 1 0x07

The above procedure will record all wSlotBus? & wsSlotDevice? in this PC. These

values will be mapped to this PC’s physical slot. This mapping will not be changed for

any PIO/PISO cards. So it can be used to identify the specified PIO/PISO card as

follows:

Stepl: Record all wSlotBus? & wSlotDevice?

Step2: Use PIO_GetConfigAddressSpace(...) to get the specified card’s wSlotBus &
wSlotDevice

Step3: The user can identify the specified PIO/PISO card if he compare the
wSlotBus & wSlotDevice in step2 to stepl.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 31

3.3 The l/O Address Map

The 1/0 address of P10 / PISO series card is automatically assigned by the
main board ROM BIOS. The I/O address can also be re-assigned by user. It is
strongly recommended not to change the 1/O address by user. The
plug&play BIOS will assign proper 1/O address to each PIO/PISO series
card very well. The I/O address of PISO-730 are given as follows:

Address Read Write
wBase+0 RESET\ control register Same
wBase+2 Aux control register Same
wBase+3 Aux data register Same
wBase+5 INT mask control register Same
wBase+7 AuX pin status register Same

wBase+0x2a |INT polarity control register [Same

wBase+0xc0 |IDIOCIDI7 IDO0CODO7
wBase+0xc4 |IDISCADI15 IDO81DO15
wBase+0xc8 [DIOLDI7 DO0CDO7
wBase+0xcc [DISLDI15 DO8[DO15

Note. Refer to Sec. 3.1 for more information about wBase.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 32

3.3.1 RESET\ Control Register

(Read/Write): wBase+0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved |Reserved |Reserved [Reserved |Reserved |Reserved |Reserved |RESET\

Note. Refer to Sec. 3.1 for more information about wBase.

When the PC is first power-up, the RESET\ signal is in Low-state. This will disable all
D/1/0O operations. The user has to set the RESET\ signal to High-state before any D/I/O
command.

outportb(wBase,1); /* RESET\ = High - all D/1/O are enable now */
outportb(wBase,0); /* RESET\ = Low -> all D/I/O are disable now */

3.3.2 AUX Control Register

(Read/Write): wBase+2

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

AUuX7 AUX6 AUux5 Aux4 Aux3 Aux2 Auxl Aux0

Note. Refer to Sec. 3.1 for more information about wBase.
Aux?=0-> this Aux is used as a D/I
Aux?=1-> this Aux is used as a D/O
When the PC is first power-on, All Aux? signal are in Low-state. All Aux? are
designed as D/I for all PIO/PISO series. Please set all Aux? in D/I state.

3.3.3 AUX data Register

(Read/Write): wBase+3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

AUuX7 AUX6 Aux5 Aux4 Aux3 Aux2 Auxl Aux0

Note. Refer to Sec. 3.1 for more information about wBase.
When the Aux? is used as D/O, the output state is controlled by this register. This
register is designed for feature extension, so don’t control this register now.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 33

3.3.4 INT Mask Control Register

(Read/Write): wBase+5

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
0 0 0 0 0 0 EN1 ENO

Note. Refer to Sec. 3.1 for more information about wBase.

ENO0/1=0-> disable INT_CHAN_0/1 as a interrupt signal (default)

ENO/1=1-> enable INT_CHAN_0/1 as a interrupt signal

outportb(wBase+5,0);
outportb(wBase+5,1);
outportb(wBase+5,2);
outportb(wBase+5,3);

/[* disable all interrupts

Refer to the following demo program for more information:

DEMO3.C - for INT_CHAN_O0 only (initial high state)
DEMO4.C - for INT_CHAN_0 only (initial low state)
DEMO5.C - for multi-channel interrupt source

/* enable interrupt of INT_CHAN_0
/* enable interrupt of INT_CHAN 1
/* enable all two channels of interrupt */

*/
*/
*/

PI1SO-730 User Manual (Ver. 1.0,12/30/99)

34

3.3.5 Aux Status Register

(Read/Write): wBase+7

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

AUX7

Aux6

Aux5

Aux4

Aux3

Aux2

Auxl

Aux0

Note. Refer to Sec. 3.1 for more information about wBase.

Aux0=INT_CHAN_0, Aux1=INT_CHAN_1, Aux7~4=Aux-ID. Refer to Sec. 4.1
for more information. The Aux0~1 are used as interrupt sources. The interrupt service
routine has to read this register for interrupt source identification. Refer to Sec. 2.5 for
more information.

3.3.6 Interrupt Polarity Control Register
(Read/Write): wBase+0x2A

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
0 0 0 0 0 0 INV1 INVO
Note. Refer to Sec. 3.1 for more information about wBase.

INV0/1=0-> select the invert signal from INT_CHAN_0/1

INV0/1=1-> select the non-invert signal from INT_CHAN_0/1
outportb(wBase+0x2a,0); /* select the invert input from all 2 channels */

outportb(wBase+0x2a,0x3); /* select the non-invert input from all 2 channels */

outportb(wBase+0x2a,0x2); /* select the inverted input of INT_CHAN_0O
/* select the non-inverted input of INT_CHAN_1 */

Refer to Sec. 2.6.7 for more information.
Refer to DEMOS5.C for more information.

*/

PI1SO-730 User Manual (Ver. 1.0,12/30/99)

----- 35

3.3.7 /O Data Register

(Read/Write): wBase+0xCO

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
IDI7 IDI6 IDI5 IDI4 IDI3 IDI2 IDI1 IDIO
(Read/Write): wBase+0xC4

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
IDI15 IDI14 IDI13 IDI12 IDI11 IDI10 IDI9 IDI8
(Read/Write): wBase+0xC8

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
DI7 DI6 DI5 Dl4 DI3 DI2 DI1 DI0
(Read/Write): wBase+0xCC

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
DI15 DI14 DI13 D112 DI11 D110 DI9 DI8

Note. Refer to Sec. 3.1 for more information about wBase.

/* write Oxff to IDO0~IDO7 */
/* read states from IDIO~IDI7 */

outportb(wBase+0xc0,0xff);
DiValue=inportb(wBase+0xc0);

/* write 0x55 to DO0~DO7 */
/* read states from DIS~DI15 */

outportb(wBase+0xc8,0x55);
DiValue=inportb(wBase+0xcc);

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 36

4. Demo Program

It is recommended to read the release note first. All important information will be
given in release note as follows:

1. where you can find the software driver & utility
. how to install software & utility

. FAQ

There are many demo programs given in the company floppy disk or CD. After

2
3. where is the diagnostic program
4

the software installation, the driver will be installed into disk as follows:

\TC*.*
\MSC*.*
\BC*.*

\TC\LIB*.*
\TC\DEMO*.*
\TC\DIAG*.*

\TC\LIB\Large*.*
\TC\LIB\Huge*.*
\TC\LIB\Large\PIO.H
\TC\\LIB\Large\TCPIO_L.LIB
\TC\LIB\Huge\PIO.H
\TC\LIB\Huge\TCPIO_H.LIB

\MSC\LIB\Large\PIO.H

- for Turbo C 2.xx or above
- for MSC 5.xx or above
- for BC 3.xx or above

- for TC library
-> for TC demo program
-> for TC diagnostic program

- TC large model library

- TC huge model library

-> TC declaration file

- TC large model library file
-> TC declaration file

- TC huge model library file

- MSC declaration file

e \MSC\LIB\Large\MSCPIO_L.LIB - MSC large model library file
e \MSC\LIB\Huge\PIO.H - MSC declaration file
e \MSC\LIB\Huge\MSCPIO_H.LIB - MSC huge model library file

- BC declaration file
-> BC large model library file
- BC declaration file
-> BC huge model library file

e \BC\LIB\Large\PIO.H
» \BC\LIB\Large\BCPIO_L.LIB
» \BC\LIB\Huge\PIO.H
» \BC\\LIB\Huge\BCPIO_H.LIB

NOTE: The library is available for all PIO/P1SO series cards.

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 37

4.1 PIO_PISO

/* __ */
/* Find all PIOPISO series cards in this PC system */
/* step 1 : plug all PIOPISO cards into PC */
/* step 2 : run PIO_PI SO EXE */
/* __ */

#i ncl ude "PI O H"

WORD wBase, Wi rq;
WORD wBase2, W r gq2;

int main()

int i,j,j1,j2,j3,j4,k,jj,dd,j11,j22,j33,j44,

WORD wBoar ds, wRet Val ;

WORD wSubVendor , wSubDevi ce, wSubAux, wSl ot Bus, wS| ot Devi ce;
char c;

float ok,err;

clrscr();

wRet Val =PI O Dri ver | nit (&wBoards, Oxff, Oxff,O0xff); /*for PIO Pl SO/
printf("\nThrer are %d PIO PISO Cards in this PC', wBoards);

if (wBoards==0) exit(0);

Printf(" \n-c---m e "),
for(i=0; i<wBoards; i ++)

{
Pl O _Get Confi gAddr essSpace(i, &wBase, &M r q, &SubVendor ,
&wSubDevi ce, &SubAux, &Sl ot Bus, &SI ot Devi ce) ;

printf("\nCard_%d: wBase=%, WM r q=%, subl D=[%, %, %],
Slotl D=[%, %] ", i,wBase, W r q, wSubVendor , wSubDevi ce,
wSubAux, wSl ot Bus, wSl ot Devi ce) ;

printf(" -->");

ShowPi oPi so(wSubVendor, wSubDevi ce, wSubAux) ;

}

Pl O Driverd ose();
}

NOTE: the PIO_PISO.EXE is valid for all PIO/PISO cards. It can be find in the

\TC\DIAG\ directory. The user can execute the PIO_PISO.EXE to get the following

information:

» Listall PIO/PISO cards installed in this PC

» Listall resources allocated to every PIO/PISO cards

e List the wSlotBus & wSlotDevice for specified PIO/PISO card identification.
(refer to Sec. 3.2 for more information)

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 38

41.1 PIO_PISO.EXE for Windows

There has an software utility “PIO_PISO.EXE” for Windows95/98 for the detailed
information about this file, please refer to the “Readme.txt” of development toolkit for
Windows95/98. It is useful for all PIO/PIS series card.

The setup steps from the CD-ROM are given as follows:

Stepl: Toolkit(Software)/Manuals

Step2: T Agree

Step3: PCI Bus DAQ Card

Step4: PIO_PISO

Step5: Install Toolkits for Windows95/98

Step6: After installation, this program will be extracted in user define directory.

After executing the utility, every detail information for all PIO/PISO cards that
installed in the PC will be shown as follows:

A4 PIOYFIS0 serles card

Baz=hdidr DBoacdisms
ESESESSEE SAEGSSEESSSEESSSREEEERE

0xD400 FIO=-D5&/ D24

QxCO0 PIO=Did4
OxEJ0D FIO-DALGFDABE/ DA%

SubID

- LS i)
Hese Addmess 1 BOC Sub Vencor
R0 Mk Sub Denaios

Sub e

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 39

4.2 DEMO1

/* DEMOL.C : PI SO 730 D O denmp */
/* step 1 : connect CON3 to DB-16R */
/* step 2 : run DEMOL. EXE */
/* __ */

#i nclude "PI O H'

voi d piso_730 _do(l ong | DoVal ue);
voi d piso_730_ido(long | DoVal ue);
WORD wBase, W rq;

int main()

int i,j,k1,k2,11,12,jj,dd,j1,il,j2,i2;

WORD wBoards,wRetVal ,t1,t2,t3,t4,t5;

WORD wSubVendor , wSubDevi ce, wSubAux, wS| ot Bus, wS| ot Devi ce;
| ong | Qut Padl, | Qut Pad2;

char c;

clrscr();

/* step 1. find address-nappi ng of PIQ Pl SO cards */
wRet Val =PI O Dri ver I nit (&wBoar ds, 0x80, 0x08, 0x40); [/* for PI SO 730 */
printf("\nThrer are %d PI SO 730 Cards in this PC', wBoards);

i f (wBoards==0) exit(0);

printf("\n--------------- The Configuration Space --------------- ");
for(i=0; i<wBoards; i ++)

{
Pl O Get Confi gAddr essSpace(i, &Base, & r q, &SubVendor , &\SubDevi ce,
&wSubAux, &wSl ot Bus, &Sl ot Devi ce) ;
printf("\nCard %d: wBase=%, W r q=%, subl D=[%, %, %], Sl ot | D=
[%, %] ", i,wBase, W r q, wSubVendor , wSubDevi ce, wSubAux,
WSl ot Bus, wSl ot Devi ce) ;
printf(" -->");
ShowPi oPi so(wSubVendor, wSubDevi ce, wSubAux) ;
}

Pl O Get Confi gAddr essSpace(0, &wBase, &M rq, & 1, & 2, & 3, &t 4, &t 5) ;

/* step 2: enable all D/1/O port */
out port b(wBase, 1) ; /* enable DII/O */
ri
Qu
Qu
or

ntf("\n\n");
t Pad1=1;

t Pad2=0x8000;
;)

got oxy(1, 6);

pi so_730_do(| Qut Padl);

printf("\nQutput DJO0..15] = [% x]", | Qut Padl);
pi so_730_ido(I| Qut Pad2);

printf("\nCQutput I1DJO..15] = [% x]", | CQutPad2);

p
[
I
f

del ay(12000);

| Qut Padl=((| Qut Pad1l<<1) &Oxffff);

| Qut Pad2=((| Qut Pad2>>1) &Oxffff);

if (1QutPadl==0) {I QutPadl=1;| CQut Pad2=0x8000; }
if (kbhit()!=0) break;

Pl O Driverd ose();
}

/* __ */
voi d piso_730 _do(l ong | DoVal ue)

out port b(wBase+0xc8, (| DoVal ue&xff));

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 40

out port b(wBase+0xcc, ((| DovVal ue>>8) &xff));

voi d piso_730_ido(long | DoVal ue)

{

out port b(wBase+0xcO, (| DoVal ue&xff));

out port b(wBase+0xc4, ((| DoVal ue>>8) &0xff));
}

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 41

4.3 DEMOZ2

/* DEM®2.C : PISO 730 DI/O demp */
/* step 1 : connect DJO0..15] to DI[0..15], */
/* IDJO0..15] to IDI[O..15] */
/* step 2 : run DEMXR. EXE */
/* __ */

#i nclude "PI O H'

| ong piso_730_di(void);
| ong piso_730_idi(void);
WORD wBase, W rq;

int main()

int i,j,k,k1,k2,11,12,jj,dd,j1,i1,j2,i2;

WORD wBoards,wRetVal ,t1,t2,t3,t4,t5;

WORD wSubVendor , wSubDevi ce, wSubAux, wS| ot Bus, WSl ot Devi ce;
| ong | Qut Padl, | Qut Pad2, | | nPad1, | | nPad2;

char c;

clrscr();

/* step 1. find address-nmappi ng of PIQ Pl SO cards */
/* step 2: énable all DI/O port */
out port b(wBase, 1) ; /* enable DII/O */

| Qut Pad1=0x0001;
| Qut Pad2=0x8000;
for(;;)

{

got oxy(1, 8);

pi so_730_do(| Qut Padl) ;

I I nPad1=pi so_730_di ();

pi so_730_i do(I| Qut Pad2);

del ay(10000);

I I nPad2=pi so_730_idi();

printf("\n DJO..15]=[%l x] , DI[O..15]=[%l x] ", | Qut Pad1, | | nPadl) ;
printf("\nlDO=[%4 x],! 1Dl =[% x]", | Qut Pad2, (~I | nPad2&0xffff));

| Qut Padl=(| Qut Padl<<1) &xf fff;

| Qut Pad2=(| Qut Pad2>>1) &Oxf fff;

if (1CQutPadl==0) | QutPadl=1;

i f (1CQutPad2==0) | QutPad2=0x8000;
if (kbhit()!=0) break;

Pl O Driverd ose();

| ong piso_730_di (void)

{

| ong | Di Val ue;

| Di Val ue=(i nportb(wBase+0xcc) <<8);

| Di Val ue=(1 Di Val ue| (i nportb(wBase+0xc8))) &xffff;
return(l Di Val ue);

| ong piso_730_idi(void)

{

| ong | Di Val ue;

| Di Val ue=(i nport b(wBase+0xc4)<<8);

| Di Val ue=(1 Di Val ue| (i nportb(wBase+0xc0))) &xffff;
return(l Di Val ue);

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 42

4.4 DEMO3

/* DEMXB.C : PISO- 730 Interrupt (DO initial high) */
/* step 1 : DO to function generator */
/* step 2 : run DEMOXB. EXE */
/* __ */

#i ncl ude "PI O H"

#defi ne Al_8259 0x20
#defi ne A2_8259 0xA0
#defi ne EQ 0x20

WORD init_high();

void interrupt (*oldfunc) ();

static void interrupt irqg_service();

i nt COUNT_L, COUNT_H, irgnask, now i nt_state;

voi d piso_730 _do(l ong | DoVal ue);
| ong piso_730_di(void);

voi d piso_730_ido(long | DoVal ue);
| ong piso_730_idi(void);

WORD wBase, W rq;

int main()

int i,j,k,k1,k2,11,12,jj,dd,j1,i1,j2,i2;
WORD wBoards, wRetVal ,t1,t2,t3,t4,t5;

WORD wSubVendor , wSubDevi ce, wSubAux, wS| ot Bus, wSl ot Devi ce;
char c;

clrscr();

/* step 1. find address-nmappi ng of PIQ Pl SO cards */
/* step 2: énable all DI/O port */
out port b(wBase, 1) ; /* enable DII/O */
init_high();

printf("\n\n***** show the count of Low pulse *****\n");
for(;;)
{

gotoxy(1,8);
printf("\nCOUNT_L=[%d]", COUNT_L);
if (kbhit()!=0) break;
}

di sabl e();

out port b(wBase+5, 0) ; /* disable all interrupt */
if (wrqg<8)
{

setvect (W rg+8, ol df unc) ;
el se
{
setvect (W rg-8+0x70, ol df unc) ;
}
Pl O Driverd ose();

}
/* __ */

WORD i nit_high()
{
DWORD dwVal ;

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 43

di sabl e();
out port b(wBase+5, 0) ; /* disable all interrupt

if (wrqg<8)

{

ol df unc=get vect (W r q+8);

i rqmask=i nport b(A1_8259+1);

out portb(Al_8259+1,irgmask & (Oxff ~ (1 << wrq)));
setvect (W rq+8, irqg_service);

}

el se

{

ol df unc=get vect (W r g- 8+0x70) ;

i rqmask=i nport b(A1_8259+1);

out port b(Al_8259+1, i rgmask & Oxfb); /* 1 RQ2
i rqgmask=i nport b(A2_8259+1);

out port b(A2_8259+1,irgmask & (Oxff ~ (1 << (WMrg-8))));

setvect (W rqg-8+0x70, irqg_service);

}
out port b(wBase+0x2a, 0) ; /* invert DO
now i nt_stat e=0x1; /* now DIO is high
out port b(wBase+5, 0x1) ; /* enable DIO interrupt
enabl e();

)

void interrupt irqg_service()

if (now_int_state==1) /* now DI 0O change to | ow

{ /* INT_CHAN O = !DIO

COUNT _L++; /* find a | ow pul se (Dl 0)

if ((inportb(wBase+7)&l)==0) /* DIO still fixed in |ow
/* need to generate a high pul se
/* I NVO sel ect noninverted input
/* now DI 0=l ow

out port b(wBase+0x2a, 1) ;
now i nt _st at e=0;

el se now_ int_state=1; /* now DI 0=Hi gh
}
el se now DI 0 change to high

/*
{ /* INT_CHAN. O = DO
COUNT _H++; /* find a high pulse (D 0)
if ((inportb(wBase+7)&l)==1) /* DIO still fixed in high
{ /* need to generate a high pul se
/* INVO sel ect inverted input
/* now DI 0=hi gh

out port b(wBase+0x2a, 0) ;
now i nt_state=1;

el se now_ i nt_state=0; /* now DI 0=I ow

}
if (Wrqg>=8) outportb(A2_8259, 0x20);
out port b(Al_8259, 0x20);

*/

*/

*/

*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

*/

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 44

4.5 DEMOA4

/* DEMX.C : PISO- 730 Interrupt (DO initial |ow) */
/* step 1 : DO to function generator */
/* step 2 : run DEMXA. EXE */
/* __ */

#i ncl ude "PI O H"

#defi ne Al_8259 0x20
#defi ne A2_8259 0xA0
#define EQA 0x20

WORD init_|ow);

void interrupt (*oldfunc) ();

static void interrupt irqg_service();

i nt COUNT_L, COUNT_H,irqgnask, now i nt_state;

voi d piso_730 _do(l ong | DoVal ue);
| ong piso_730_di(void);

voi d piso_730_ido(long | DoVal ue);
| ong piso_730_idi(void);

WORD wBase, W rq;

int main()

int i,j,k,k1,k2,11,12,jj,dd,j1,i1,j2,i2;
WORD wBoards,wRetVal ,t1,t2,t3,t4,t5;

WORD wSubVendor , wSubDevi ce, wSubAux, wS| ot Bus, wS| ot Devi ce;
char c;

clrscr();

/* step 1. find address-nmappi ng of PIQ Pl SO cards */
/* step 2: énable all DI/O port */
out port b(wBase, 1) ; /* enable DII/O */
init_Low();

printf("\n\in***** show the count of Hi gh pulse *****\n");
for(;;)
{
gotoxy(1,8);
printf("\nCOUNT_H=[%d] ", COUNT_H);
if (kbhit()!=0) break;
}
di sabl e();
out port b(wBase+5, 0) ; /* disable all interrupt */
if (wrqg<8)
{
setvect (W rg+8, ol df unc);
el se
{
setvect (W rg-8+0x70, ol df unc) ;
}
Pl O Driverd ose();
}
/* __ */
WORD init_|ow()

{
DWORD dwval ;

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 45

di sabl e();
out port b(wBase+5, 0) ; /* disable all interrupt

if (wrqg<8)

{

ol df unc=get vect (W r q+8);

i rqmask=i nport b(A1_8259+1);

out portb(Al_8259+1,irgmask & (Oxff ~ (1 << wrq)));
setvect (W rq+8, irqg_service);

}

el se

{

ol df unc=get vect (W r g- 8+0x70) ;

i rqmask=i nport b(A1_8259+1);

out port b(Al_8259+1, i rgmask & Oxfb); /* 1 RQ2
i rqgmask=i nport b(A2_8259+1);

out port b(A2_8259+1,irgmask & (Oxff ~ (1 << (WMrg-8))));

setvect (W rqg-8+0x70, irqg_service);

}
out port b(wBase+0x2a, 1) ; /* non-invert DIO
now i nt _st at e=0x0; /* now DIO is | ow
out port b(wBase+5, 0x1) ; /* enable DIO interrupt
enabl e();
}
| % L L L L L L L L e alololol-.

void interrupt irqg_service()

if (now_int_state==1) /* now DI O change to | ow

{ /* INT_CHAN. O = !DIO

COUNT _L++; /* find a | ow pul se (Dl 0)

if ((inportb(wBase+7)&l)==0) /* DIO still fixed in |ow
/* need to generate a high pul se
/* I NVO sel ect noninverted input
/* now DI 0=l ow

out port b(wBase+0x2a, 1) ;
now i nt _st at e=0;

el se now_ int_state=1; /* now DI 0=Hi gh
}
el se now DI 0 change to high

/*
{ /* INT_CHAN. O = DO
COUNT_H++; /* find a high pulse (Dl O0)
if ((inportb(wBase+7)&1l)==1) /* DIO still fixed in high
{ /* need to generate a high pul se
/* INVO sel ect inverted input
/* now DI 0=hi gh

out port b(wBase+0x2a, 0) ;
now i nt _state=1;

el se now i nt_state=0; /* now DI 0=I ow

}
if (WMrqg>=8) outportb(A2_8259, 0x20);
out port b(Al_8259, 0x20);

*/

*/

*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

*/

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 46

4.6 DEMOS5

/* DEMX®.C : PISO- 730 Interrupt (Multi interrupt source) */
/* DIO : initial low, D1 : initial high */
/* step 1 : connect DIO & DIl to function generator */
/* step 2 : run DEMX%. EXE */
/* __ */

#i ncl ude "PI O H"

#defi ne Al_8259 0x20
#defi ne A2_8259 0xAO0
#defi ne EQ 0x20

WORD init();

void interrupt (*oldfunc) ();

static void interrupt irqg_service();

int irqgmask,now int_state,new.int_state,invert,int_c,int_num
int CNT_L1, CNT_L2, CNT_H1, CNT_H2;

WORD wBase, W rq;

int main()

int i,j,k;

WORD wBoar ds, wRet Val ,t1,t2,t3,t4,t5;

WORD wSubVendor , wSubDevi ce, wSubAux, wS| ot Bus, wS| ot Devi ce;
char c;

clrscr();

/* step 1. find address-nmappi ng of PIQ Pl SO cards */
/* step 2: énable all DI/O port */
out port b(wBase, 1); /* enable DII/O */
init();

printf("\n\in***** show the count of Hi gh pulse *****\n");
for(;;)

{

got oxy(1, 8);

printf("\nCNT_L1, CNT_L2=[%d, %%bd] ", CNT_L1, CNT_L2);
printf("\nCNT_HL, CNT_H2=[%%&d, %%bd] ", CNT_H1, CNT_H2) ;
i f (kbhit()!=0) break;

di sabl e();
out port b(wBase+5, 0) ; /* disable all interrupt */
if (wrqg<8)

setvect (W rg+8, ol df unc);

}

el se
{
setvect (W r g- 8+0x70, ol df unc);

}
Pl O Driverd ose();
}
/* __ */
WORD i nit ()

{

DWORD dwval ;

di sabl e();

out port b(wBase+5, 0) ; /* disable all interrupt */
if (wrqg<8)

ol df unc=get vect (W r q+8);

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 47

i rqmask=i nport b(A1_8259+1);
out portb(Al_8259+1,irgmask & (Oxff ~ (1 << wirq)));
setvect (W rq+8, irqg_service);

el se

{

ol df unc=get vect (W r g- 8+0x70) ;

i rqmask=i nport b(A1_8259+1);

out port b(Al_8259+1, i rgmask & Oxfb);

i rqgmask=i nport b(A2_8259+1);

out port b(A2_8259+1,irgmask & (Oxff ~ (1 << (WMrg-8))));
setvect (W rqg-8+0x70, irqg_service);

i nvert=0x1;
out port b(wBase+0x2a, i nvert); /* non-invert DIO
/* invert D1
now i nt _st at e=0x2; /* now DO is |ow
/* now D1 is high
out port b(wBase+5, 0x3) ; /* enable all inter
enabl e();
}
2
void interrupt irqg_service()
{
i nt_num++;
new i nt _st at e=i nportb(wBase+7) &0x3;
int_c=new_int_statenow_int_state;
if ((int_c&0x1)!=0) /* now | NT_CHAN O change
{
if ((new_int_state&0x01)!=0)
CNT_H1++;
}
el se /* now | NT_CHAN O change
{
CNT_L1++;
}
i nvert=invert”i; /* generate a high pul se
}
if ((int_c&0x2)!=0) /* now | NT_CHAN 1 change
{
if ((new_int_state&0x02)!=0)
CNT_H2++;
el se /* now | NT_CHAN 1 change
{
CNT_L2++;
}
i nvert=invert”2; /* generate a high pul se

now_i nt _state=new_int_state;

out port b(wBase+0x2a, i nvert);

if (Wrqg>=8) outportb(A2_8259, 0x20);
out port b(Al_8259, 0x20);

}

/* 1 RQ2

r upt

to high

to | ow

to high

to | ow

*/

*/

PI1SO-730 User Manual (Ver. 1.0,12/30/99) ----- 48

	Introduction
	Features
	Specifications
	Order Description
	Options

	PCI Data Acquisition Family
	Product Check List

	Hardware configuration
	Board Layout
	I/O Operation
	Non-isolated DO Port Architecture (CON3)
	Non-isolated DI Port Architecture (CON2)
	Isolated DO Port Architecture (CON1)
	Isolated DI Port Architecture (CON1)

	Interrupt Operation
	Interrupt Block Diagram of PISO-730
	INT_CHAN_0
	INT_CHAN_1
	Initial_high, active_low Interrupt source
	Initial_low, active_high Interrupt source
	Multiple Interrupt Source

	Daughter Boards
	DB-16P Isolated Input Board
	DB-16R Relay Board
	DB-24PR, DB-24POR, DB-24C
	Daughter Board Comparison Table

	Pin Assignment
	Isolated I/O connector
	JP1
	TTL-level I/O connector

	I/O Control Register
	How to Find the I/O Address
	PIO_DriverInit
	PIO_GetConfigAddressSpace
	Show_PIO_PISO

	The Assignment of I/O Address
	The I/O Address Map
	RESET\ Control Register
	AUX Control Register
	AUX data Register
	INT Mask Control Register
	Aux Status Register
	Interrupt Polarity Control Register
	I/O Data Register

	Demo Program
	PIO_PISO
	PIO_PISO.EXE for Windows

	DEMO1
	DEMO2
	DEMO3
	DEMO4
	DEMO5

