
PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 1

PISO-730

User Manual

Warranty
All products manufactured by ICP DAS are warranted against

defective materials for a period of one year from the date of
delivery to the original purchaser.

Warning
ICP DAS assume no liability for damages consequent to the

use of this product. ICP DAS reserves the right to change this
manual at any time without notice. The information furnished by
ICP DAS is believed to be accurate and reliable. However, no
responsibility is assumed by ICP DAS for its use, nor for any
infringements of patents or other rights of third parties resulting
from its use.

Copyright
Copyright 1999 by ICP DAS. All rights are reserved.

Trademark
The names used for identification only maybe registered

trademarks of their respective companies.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 2

Tables of Contents

1. INTRODUCTION .. 3

1.1 FEATURES.. 3

1.2 SPECIFICATIONS ... 4

1.3 ORDER DESCRIPTION.. 5

1.4 PCI DATA ACQUISITION FAMILY... 5

1.5 PRODUCT CHECK LIST .. 6

2. HARDWARE CONFIGURATION.. 7

2.1 BOARD LAYOUT .. 7

2.2 I/O OPERATION .. 8

2.3 INTERRUPT OPERATION... 12

2.4 DAUGHTER BOARDS.. 20

2.5 PIN ASSIGNMENT .. 24

3. I/O CONTROL REGISTER... 26

3.1 HOW TO FIND THE I/O ADDRESS ... 26

3.2 THE ASSIGNMENT OF I/O ADDRESS ... 31

3.3 THE I/O ADDRESS MAP... 32

4. DEMO PROGRAM.. 37

4.1 PIO_PISO ... 38

4.2 DEMO1 ... 40

4.3 DEMO2 ... 42

4.4 DEMO3 ... 43

4.5 DEMO4 ... 45

4.6 DEMO5 ... 47

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 3

1. Introduction

The PISO-730 provides 32 channels isolated digital I/O (16×DI and 16×DO) and 32
channels TTL-level digital I/O (16×DI and 16×DO). The board interface to field logic
signals, eliminating ground-loop problems and isolating the host PC from damaging
voltages. Its isolated I/O channels provide up to 2,500Vdc of protection.

The PISO-730 has one 37-pin D-type connector and two 20-pin flat-cable
connectors. The flat-cable can be connected to ADP-20/PCI adapter. The adapter can be
fixed on the chassis. It can be installed in a 5V PCI slot and can support truly “Plug and
Play”.

1.1 Features

• PCI Bus
• 32 isolated DIO channels (16×DI and 16×DO)
• 32 TTL-level DIO channels (16×DI and 16×DO)
• DC/DC converter build-in
• One DB-37 D-type connector for isolated input and output
• Two separate 20-pin connectors for non-isolated input and output
• Up to 2500Vdc isolated voltage
• Interrupt source: 2 channels
• Connects directly to DB-24PR, 24POR, DB-24C, DB-16P, DB-16R
• SMD, short card, power saving
• Automatically detected by Windows 95/98/NT
• No base address or IRQ switches to set

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 4

1.2 Specifications

 Isolated DIO channels
• Optical isolated input channel

Channel NO.: 16 digital inputs

Type: Isolated current input

Isolation voltage: 2,500Vdc

Input voltage: 3.5-30Vdc

Input impedance: 1.2KΩ/1W

Response time: 10KHz (Max.)

• Optical isolated output channel

Channel NO.: 16 digital outputs

Output voltage: open-collector 5-30Vdc

Isolation voltage: 2,500Vdc

Sink current: 200mA (Max.)

Response time: 10KHz (Max.)

 TTL-level DIO channels
• TTL-level input channel

Channel NO.: 16 digital input
Input voltage level: (TTL compatible)
VIL: 0.8V (Max.)
VIH: 2.4V (Min.)

• TTL-level output channel
Channel NO.: 16 digital output
Driver capacity: (TTL compatible)
IOL: 8 mA (sink)
IOH: 0.4 mA (source)

General specifications
• Operation Temp.: 0-50°C
• Storage Temp.: -20°C to 70°C
• Humidity: 0-90%, non-condensing

• Dimensions: 180mm×105mm

• Power consumption: 640mA

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 5

1.3 Order Description

• PISO-730: PCI bus 32 channel isolated digital I/O board

1.3.1 Options

• DB-24PR, DB-24PR: 24 channels power relay board
• DB-24POR: 24 channel PhotoMos output board
• DB-24C: 24 channel open-collector output board
• DB-16P: 16 channel isolated D/I board
• DB-16R: 16 channel relay board
• ADP-20/PCI: Extender, 20-pin header to 20-pin header for PCI bus I/O
 boards
• DN-37: I/O connector block with DIN-Rail mounting and 37-pin D-type
 connector
• DB-37: 37-pin D-type connector pin to pin screw terminal for any 37 pin
 D-type connector of I/O board
• NAPPCI/win: DLLs for Windows 95/98
• NAPPCI/wnt: DLLs for Windows NT 4.0
• NAPVIEW/1: LabVIEW driver for Windows 95/98
• NAPVIEW/2: LabVIEW driver for Windows NT

1.4 PCI Data Acquisition Family
We provide a family of PCI-BUS data acquisition cards. These cards can be

divided into three groups as follows:

1. PCI-series: first generation, isolated or non-isolated cards

PCI-1002/1202/1800/1802/1602: multi-function family, non-isolated

PCI-P16R16/P16C16/P16POR16/P8R8: D/I/O family, isolated

PCI-TMC12: timer/counter card, non-isolated

2. PIO-series: cost-effective generation, non-isolated cards

PIO-823/821: multi-function family

PIO-D144/D96/D64/D56/D48/D24: D/I/O family

PIO-DA16/DA8/DA4: D/A family

3. PISO-series: cost-effective generation, isolated cards

PISO-813: A/D card

PISO-P32C32/P64/C64: D/I/O family

PISO-P8R8/P8SSR8AC/P8SSR8DC: D/I/O family

PISO-730: D/I/O card

PISO-DA2: D/A card

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 6

1.5 Product Check List

 In addition to this manual, the package includes the following items:

• one piece of PISO-730 card

• one piece of company floppy diskette or CD

• one piece of release note

 It is recommended to read the release note firstly. All importance information

will be given in release note as follows:

1. where you can find the software driver & utility

2. how to install software & utility

3. where is the diagnostic program

4. FAQ

Attention!
If any of these items is missing or damaged, contact the dealer from whom you

purchased the product. Save the shipping materials and carton in case you want to ship

or store the product in the future.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 7

2. Hardware configuration

2.1 Board Layout

CON1: 16 channels isolated D/I and 16 channels isolated D/O

CON2: 16 channels TTL-level (non-isolated) D/I

CON3: 16 channels TTL-level (non-isolated) D/O

JP1: Reserved

C
O

N
3

C
O

N
2

C
O

N
1

P
C

I B
U

S

1
2

1
9

2
0

1
2

1
9

2
0

IN

O
U

T

P
IS

O
-7

3
0

P
C

I
co

n
tro

lle
r

JP
1

1 2

7 8

R
e

se
rve

d

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 8

2.2 I/O Operation

2.2.1 Non-isolated DO Port Architecture (CON3)

When the PC is power-up, all operations of non-isolated DO states are clear to

low-state. The RESET\ signal is used to clear non-isolated DO states. Refer to Sec. 3.3.1

for more information about RESET\ signal.

• The RESET\ is in Low-state ! all non-isolated DO states are clear to low state

The block diagram of non-isolated DO is given as follows:

D/O buffer CKT

Clock input

input Latch

Data

RESET\

CON3clear

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 9

2.2.2 Non-isolated DI Port Architecture (CON2)

When the PC is power-up, all operations of non-isolated DI port are disable. The

enable/disable of non-isolated DI port is controlled by the RESET\ signal. Refer to Sec.

3.3.1 for more information about RESET\ signal.

• The RESET\ is in Low-state ! all non-isolated DI operation is disable

• The RESET\ is in High-state ! all non-isolated DI operation is enable

D/I buffer CKT

Clock input

Buffer input

Data

RESET\

disable CON2

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 10

2.2.3 Isolated DO Port Architecture (CON1)

 When the PC is power-up, all operations of isolated DO states are clear to low-state.

The RESET\ signal is used to clear isolated DO states. Refer to Sec. 3.3.1 for more

information about RESET\ signal.

• The RESET\ is in Low-state ! all isolated DO states are clear to low state

 Each eight open-collector output channels share EO.COM(IDO0~IDO7 use

EO.COM1 and IDO8~IDO15 use EO.COM2)

 The block diagram of isolated DO is given as follows:

EO.COM1

LOAD
IDO0

IDO1

IDO7

IGND

LOAD

LOAD

External
Power supply

Internal of PISO-730External

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 11

2.2.4 Isolated DI Port Architecture (CON1)

 The PISO-730 provides 16 channels isolated digital input. Each of the isolated digital

input accepts voltages from 3.5-30Vdc. Each eight input channels share one external

common end point. (IDI0~IDI7 use EI.COM1 and IDI8~IDI15 use EI.COM2)

1.2K/1W

1.2K/1W

1.2K/1W

EI.COM1

IDI0

IDI1

IDI7

External Internal of PISO-730

Vcc

External power supply
3.5 - 30 Vdc

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 12

2.3 Interrupt Operation

There are two interrupt sources in PISO-730. These two signals are named as

INT_CHAN_0 and INT_CHAN_1. Their signal sources are given as follows:

INT_CHAN_0: DI0

INT_CHAN_1: DI1

If only one interrupt signal source is used, the interrupt service routine does not

have to identify the interrupt source. Refer to DEMO3.C and DEMO4.C for more

information.

If there are more than one interrupt source, the interrupt service routine has to

identify the active signals as follows: (refer to DEMO5.C)

1. Read the new status of all interrupt signal sources(refer to Sec 3.3.5)

2. Compare the new status with the old status to identify the active signals

3. If INT_CHAN_0 is active, service it

4. If INT_CHAN_1 is active, service it

5. Update interrupt status

Note: if the interrupt signal is too short, the new status may be as same as old

status. In that condition the interrupt service routine can not identify which

interrupt source is active. So the interrupt signal must be hold_active long enough

until the interrupt service routine is executed. This hold_time is different for

different O.S. The hold_time can be as short as micro-second or as long as second.

In general, 20ms is enough for all O. S.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 13

2.3.1 Interrupt Block Diagram of PISO-730

The interrupt output signal of PISO-730, INT\ is level-trigger &
Active_Low. If the INT\ generate a low-pulse, the PISO-730 will interrupt the PC

once a time. If the INT\ is fixed in low level, the PISO-730 will interrupt the PC

continuously. So the INT_CHAN_0/1 must be controlled in a pulse_type signals.

They must be fixed in low level state normally and generated a
high_pulse to interrupt the PC.

The priority of INT_CHAN_0/1 is the same. If all these two signals are active at

the same time, then INT\ will be active only once a time. So the interrupt service routine

has to read the status of all interrupt channels for multi-channel interrupt. Refer to Sec.

2.6.7 for more information.

DEMO5.C ! for multi-channel interrupt source

If only one interrupt source is used, the interrupt service routine doesn’t have to

read the status of interrupt source. The demo program DEMO3.C and DEMO4.C are

designed for single-channel interrupt demo as follows:

DEMO3.C & DEMO4.C ! for INT_CHAN_0 only

INT_CHAN_0

INT_CHAN_1

0

INT\

Level_trigger

initial_low
active_high

0

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 14

2.3.2 INT_CHAN_0

The INT_CHAN_0 must be fixed in low level state normally and
generated a high_pulse to interrupt the PC.

The EN0 can be used to enable/disable the INT_CHAN_0 as follows: (refer to

Sec. 3.3.4)

EN0=0!INT_CHAN_0=disable

EN0=1!INT_CHAN_0=enable

The INV0 can be used to invert/non-invert the DI0 as follows: (Refer to Sec.

3.3.6)

INV0=0!INT_CHAN_0=invert state of DI0

INV0=1!INT_CHAN_0=non-invert state of DI0

Refer to demo program for more information as follows:

DEMO3.C ! for INT_CHAN_0 (initial high)

 DEMO4.C ! for INT_CHAN_0 (initial low)

 DEMO5.C ! for multi-channel interrupt source

NOTE: Refer to Sec. 2.3.4 & Sec. 2.3.5 for active high-pulse
 generation.

INT_CHAN_0

Inverted/Noninverted select
INV0

Enable/Disable select
EN0

DI0

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 15

2.3.3 INT_CHAN_1

The INT_CHAN_1 must be fixed in low level state normally and
generated a high_pulse to interrupt the PC.

The EN1 can be used to enable/disable the INT_CHAN_1 as follows: (refer to

Sec. 3.3.4)

EN1=0!INT_CHAN_1=disable

EN1=1!INT_CHAN_1=enable

The INV1 can be used to invert/non-invert the DI1 as follows: (Refer to Sec.

3.3.6)

INV1=0!INT_CHAN_1=invert state of DI1

INV1=1!INT_CHAN_1=non-invert state of DI1

Refer to demo program for more information as follows:

DEMO3.C ! for INT_CHAN_0 (initial high)

 DEMO4.C ! for INT_CHAN_0 (initial low)

 DEMO5.C ! for multi-channel interrupt source

NOTE: Refer to Sec. 2.3.4 & Sec. 2.3.5 for active high-pulse
generation.

INT_CHAN_1

Inverted/Noninverted select
INV1

Enable/Disable select
EN1

DI1

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 16

2.3.4 Initial_high, active_low Interrupt source
If the DI0 is an initial_high, active_low signal, the interrupt service routine

should use INV0 to invert/non-invert the DI0 for high_pulse generation as follows:

(Refer to DEMO3.C and the DI1 is similarly)

Initial set:

void interrupt irq_service()
{
if (now_int_state==1) /* now DI0 is changed to LOW */(a)
 { /* --> INT_CHAN_0=!DI0=HIGH now */
 COUNT_L++; /* find a LOW_pulse (DI0) */
 If((inport(wBase+7)&1)==0)/* the DI0 is still fixed in LOW */
 { /* !!!! need to generate a high_pulse */
 outportb(wBase+0x2a,1);/* INV0 select the non-inverted input */(b)
 /* INT_CHAN_0=DI0=LOW --> */
 /* INT_CHAN_0 generate a high_pulse */
 now_int_state=0; /* now DI0=LOW */
 }
 else now_int_state=1; /* now DI0=HIGH */
 /* don’t have to generate high_pulse */
 }
else /* now DI0 is changed to HIGH */(c)
 { /* --> INT_CHAN_0=DI0=HIGH now */
 COUNT_H++; /* find a HIGH_pulse (DI0) */
 If((inport(wBase+7)&1)==1)/* the DI0 is still fixed in HIGH */
 { /* need to generate a high_pulse */
 outportb(wBase+0x2a,0);/* INV0 select the inverted input */(d)
 /* INT_CHAN_0=!DI0=LOW --> */
 /* INT_CHAN_0 generate a high_pulse */
 now_int_state=1; /* now DI0=HIGH */
 }
 else now_int_state=0; /* now DI0=LOW */
 /* don’t have to generate high_pulse */
 }
if (wIrq>=8) outportb(A2_8259,0x20);
outportb(A1_8259,0x20);
}

now_int_state=1; /* initial state for DI0 */

outportb(wBase+0x2a,0); /* select the inverted DI0 */

DI0

INV0

INT_CHAN_0

(a) (b) (c) (d)

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 17

2.3.5 Initial_low, active_high Interrupt source
If the DI0 is an initial_low, active_high signal, the interrupt service routine

should use INV0 to invert/non-invert the DI0 for high_pulse generation as follows:

(Refer to DEMO4.C and the DI1 is similarly)

Initial set:

void interrupt irq_service()
{
if (now_int_state==1) /* now DI0 is changed to LOW */(c)
 { /* --> INT_CHAN_0=!DI0=HIGH now */
 COUNT_L++; /* find a LOW_pulse (DI0) */
 If((inport(wBase+7)&1)==0)/* the DI0 is still fixed in LOW */
 { /* !!!! need to generate a high_pulse */
 outportb(wBase+0x2a,1);/* INV0 select the non-inverted input */(d)
 /* INT_CHAN_0=DI0=LOW --> */
 /* INT_CHAN_0 generate a high_pulse */
 now_int_state=0; /* now DI0=LOW */
 }
 else now_int_state=1; /* now DI0=HIGH */
 /* don’t have to generate high_pulse */
 }
else /* now DI0 is changed to HIGH */(a)
 { /* --> INT_CHAN_0=DI0=HIGH now */
 COUNT_H++; /* find a High_pulse (DI0) */
 If((inport(wBase+7)&1)==1)/* the DI0 is still fixed in HIGH */
 { /* need to generate a high_pulse */
 outportb(wBase+0x2a,0);/* INV0 select the inverted input */(b)
 /* INT_CHAN_0=!DI0=LOW --> */
 /* INT_CHAN_0 generate a high_pulse */
 now_int_state=1; /* now DI0=HIGH */
 }
 else now_int_state=0; /* now DI0=LOW */
 /* don’t have to generate high_pulse */
 }
if (wIrq>=8) outportb(A2_8259,0x20);
outportb(A1_8259,0x20);
}

now_int_state=0; /* initial state for DI0 */

outportb(wBase+0x2a,1); /* select the non-inverted DI0 */

DI0

INV0

INT_CHAN_0

(a) (b) (c) (d)

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 18

2.3.6 Multiple Interrupt Source

 Assume: DI0 is initial Low, active High

 DI1 is initial High, active Low

 as follows:

Refer to DEMO5.C for source program. All these three falling-edge & rising-edge can

be detected by DEMO5.C.

Note: when the interrupt is active, the user program has to identify the active

signals. These signals may be active at the same time. So the interrupt service

routine has to service all active signals at the same time.

DI0

DI1

DI0 & DI1 are
active at the
same time

DI0 & DI1 are
return to

normal at the
same time

 DI1 is return
to normal

DI1 is atcive

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 19

Initial setting:

void interrupt irq_service()
{
new_int_state=inportb(wBase+7)&0x03; /* read all interrupt state */
int_c=new_int_state^now_int_state; /* compare which interrupt */
 /* signal be change */
if ((int_c&0x1)!=0) /* INT_CHAN_0 is active */
 {
 if ((new_int_state&0x01)!=0) /* now DI0 change to high */
 {
 CNT_H1++;
 }
 else /* now DI0 change to low */
 {
 CNT_L1++;
 }
 invert=invert^1; /* to generate a high pulse */
 }
if ((int_c&0x2)!=0)
 {
 if ((new_int_state&0x02)!=0) /* now DI1 change to high */
 {
 CNT_H2++;
 }
 else /* now DI1 change to low */
 {
 CNT_L2++;
 }
 invert=invert^2; /* to generate a high pulse */
 }

now_int_state=new_int_state;
outportb(wBase+0x2a,invert);
if (wIrq>=8) outportb(A2_8259,0x20);
outportb(A1_8259,0x20);
}

now_int_state=0x2; /* Initial state: DI0 at low level, DI1 at high level */

invert=0x1; /* non-invert DI0 & invert DI1 */

outportb(wBase+0x2a,invert);

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 20

2.4 Daughter Boards

2.4.1 DB-16P Isolated Input Board
The DB-16P is a 16-channel isolated digital input daughter board. The optically

isolated inputs of the DB-16P consist of a bi-directional photo-coupler with a resistor for

current sensing. You can use the DB-16P to sense DC signal from TTL levels up to 24V

or use the DB-16P to sense a wide range of AC signals. You can use this board to

isolated the computer from large common-mode voltage, ground loops and transient

voltage spike that often occur in industrial environments.

V+

V-

PISO-730

DB-16P

photo-Isolated
PISO-730

20Pin cable

AC or DC Signal

0V to 24V

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 21

2.4.2 DB-16R Relay Board

The DB-16R is a 16-channels relay output board, consists of 16 form C relays for

efficient switch of load by programmed control. The relay are energized by applying

12V/24V voltage signal to the appropriated relay channel on the 20-pin flat connector.

There are 16 enunciator LEDs for each relay, light when their associated relay is

activated.

DB-16R

PISO-730

20Pin cable

Normal Open

Normal Close

Com.

Note:

Channel: 16 From C Relay

Relay: Switching up to 0.5A at 110ACV

or 1A at 24DCV

From C Relay

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 22

2.4.3 DB-24PR, DB-24POR, DB-24C
DB-24PR 24*power relay, 5A/250V

DB-24POR 24*photoMOS relay, 0.1A/350VAC

DB-24C 24*open collector, 100mA per channel, 30V max.

The DB-24PR, is a 24-channel power relay output board, consists of 8 form C and

16 form A electromechanical relays for efficient switching of load programmed control.

The contact of each relay can control a 5A load at 250ACV/30VDCV. The relay is

energized by applying a 5 voltage signal to the appropriate relay channel on the 20-pin

flat cable connector (just used 16 relays) or 50-pin flat cable connector (OPTO-22

compatible, for DIO-24 series). 24 enunciator LEDs, one for each relay, light when their

associated relay is activated. To avoid overloading your PC’s power supply, this board

needs a +12VDC or +24VDC external power supply.

DB-24PRPISO-730

Normal Open

Com.

Note:

50-Pin connector (OPTO-22 compatible), for DIO-24, DIO-48, DIO-144,

 PIO-D144, PIO-D96, PIO-D56, PIO-D48, PIO-D24

Channel: 16 Form A Relays, 8 Form C Relay

Relay: switching up to 5A at 110ACV / 5A at 30DCV

Form A Relay

20-pin header

50-pin header

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 23

2.4.4 Daughter Board Comparison Table

20-pin flat-cable

header

50-pin flat-cable

header

DB-37

header

DB-37 No No Yes

DN-37 No No Yes

ADP-37/PCI No Yes Yes

ADP-50/PCI No Yes No

DB-24P No Yes No

DB-24PD No Yes Yes

DB-16P8R No Yes Yes

DB-24R No Yes No

DB-24RD No Yes Yes

DB-24C Yes Yes Yes

DB-24PR Yes Yes No

Db-24PRD No Yes Yes

DB-24POR Yes Yes Yes

DB-24SSR No Yes Yes

NOTE: The PISO-730 has two 20-pin flat-cable header, and one 37 pin D-type

 connector

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 24

2.5 Pin Assignment

2.5.1 Isolated I/O connector

CON1: 37 pin of D-type female connector

Pin No. Description Pin No Description

1 IDI0 20 IDI1

2 IDI2 21 IDI3

3 IDI4 22 IDI5

4 IDI6 23 IDI7

5 IDI8 24 IDI9

6 IDI10 25 IDI11

7 IDI12 26 IDI13

8 IDI14 27 IDI15

9 EI.COM1 28 EI.COM2

10 EO.COM1 29 IGND

11 IDO0 30 IDO1

12 IDO2 31 IDO3

13 IDO4 32 IDO5

14 IDO6 33 IDO7

15 IDO8 34 IDO9

16 IDO10 35 IDO11

17 IDO12 36 IDO13

18 IDO14 37 IDO15

19 EO.COM2

2.5.2 JP1

Note: Reserved

1 3 5 7

2 4 6 8

JP1

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 25

2.5.3 TTL-level I/O connector

CON2: 20-pin of flat-cable connector

Pin no. Description Pin no. Description

1 DI0 2 DI1

3 DI2 4 DI3

5 DI4 6 DI5

7 DI6 8 DI7

9 DI8 10 DI9

11 DI10 12 DI11

13 DI12 14 DI13

15 DI14 16 DI15

17 D.GND 18 D.GND

19 +5V 20 +12V

CON3: 20-pin of flat-cable connector

Pin no. Description Pin no. Description

1 DO0 2 DO1

3 DO2 4 DO3

5 DO4 6 DO5

7 DO6 8 DO7

9 DO8 10 DO9

11 DO10 12 DO11

13 DO12 14 DO13

15 DO14 16 DO15

17 D.GND 18 D.GND

19 +5V 20 +12V

All signals are TTL compatible

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 26

3. I/O Control Register

3.1 How to Find the I/O Address

The plug & play BIOS will assign a proper I/O address to every PIO/PISO series

card in the power-up stage. The fixed IDs of PIO/PISO series card are given as follows:

• Vendor ID = E159
• Device ID = 0002

The sub IDs of PISO-730 are given as follows:

• Sub-vendor ID= 80
• Sub-device ID = 08
• Sub-aux ID = 40

We provide all necessary functions as follows:

1. PIO_DriverInit(&wBoard, wSubVendor, wSubDevice, wSubAux)

2. PIO_GetConfigAddressSpace(wBoardNo,*wBase,*wIrq, *wSubVendor,

*wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)

3. Show_PIO_PISO(wSubVendor, wSubDevice, wSubAux)

All functions are defined in PIO.H. Refer to Chapter 4 for more information. The

important driver information is given as follows:

1. Resource-allocated information:

• wBase : BASE address mapping in this PC

• wIrq: IRQ channel number allocated in this PC

2. PIO/PISO identification information:

• wSubVendor: subVendor ID of this board

• wSubDevice: subDevice ID of this board

• wSubAux: subAux ID of this board

3. PC’s physical slot information:

• wSlotBus: hardware slot ID1 in this PC’s slot position

• wSlotDevice: hardware slot ID2 in this PC’s slot position

The utility program, PIO_PISO.EXE, will detect & show all PIO/PISO cards

installed in this PC. Refer to Sec. 4.1 for more information.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 27

3.1.1 PIO_DriverInit

PIO_DriverInit(&wBoards, wSubVendor,wSubDevice,wSubAux)

• wBoards=0 to N ! number of boards found in this PC

• wSubVendor ! subVendor ID of board to find

• wSubDevice ! subDevice ID of board to find

• wSubAux ! subAux ID of board to find

This function can detect all PIO/PISO series card in the system. It is implemented

based on the PCI plug & play mechanism-1. It will find all PIO/PISO series cards

installed in this system & save all their resource in the library.

Sample program 1: find all PISO-730 in this PC

wSubVendor=0x80; wSubDevice=8; wSubAux=0x40; /* for PISO-730 */

wRetVal=PIO_DriverInit(&wBoards, wSubVendor,wSubDevice,wSubAux);

printf("Threr are %d PISO-730 Cards in this PC\n",wBoards);

/* step2: save resource of all PISO-730 cards installed in this PC */

for (i=0; i<wBoards; i++)

 {

 PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&wID1,&wID2,&wID3,

 &wID4,&wID5);

 printf("\nCard_%d: wBase=%x, wIrq=%x", i,wBase,wIrq);

 wConfigSpace[i][0]=wBaseAddress; /* save all resource of this card */

 wConfigSpace[i][1]=wIrq; /* save all resource of this card */

 }

Sample program 2: find all PIO/PISO in this PC(refer to Sec. 4.1 for more information)

wRetVal=PIO_DriverInit(&wBoards,0xff,0xff,0xff); /*find all PIO_PISO*/
printf("\nThrer are %d PIO_PISO Cards in this PC",wBoards);
if (wBoards==0) exit(0);

printf("\n---");
for(i=0; i<wBoards; i++)
 {
 PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&wSubVendor,
 &wSubDevice,&wSubAux,&wSlotBus,&wSlotDevice);

 printf("\nCard_%d:wBase=%x,wIrq=%x,subID=[%x,%x,%x],
 SlotID=[%x,%x]",i,wBase,wIrq,wSubVendor,wSubDevice,
 wSubAux,wSlotBus,wSlotDevice);
 printf(" --> ");
 ShowPioPiso(wSubVendor,wSubDevice,wSubAux);
 }

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 28

The sub-IDs of PIO/PISO series card are given as follows:

PIO/PISO series card Description Sub_vendor Sub_device Sub_AUX

PIO-D144 144 * D/I/O 80 01 00

PIO-D96 96 * D/I/O 80 01 10

PIO-D64 64 * D/I/O 80 01 20

PIO-D56 24* D/I/O +

16*D/I + 16*D/O

80 01 40

PIO-D48 48*D/I/O 80 01 30

PIO-D24 24*D/I/O 80 01 40

PIO-823 Multi-function 80 03 00

PIO-821 Multi-function 80 03 10

PIO-DA16 16*D/A 80 04 00

PIO-DA8 8*D/A 80 04 00

PIO-DA4 4*D/A 80 04 00

PISO-C64 64 * isolated D/O 80 08 00

PISO-P64 64 * isolated D/I 80 08 10

PISO-P32C32 32 + 32 80 08 20

PISO-P8R8 8* isolated D/I +

8 * 220V relay

80 08 30

PISO-P8SSR8AC 8* isolated D/I +

8 * SSR /AC

80 08 30

PISO-P8SSR8DC 8* isolated D/I +

8 * SSR /DC

80 08 30

PISO-730 16*DI + 16*D/O +

16* isolated D/I +

16* isolated D/O

80 08 40

PISO-813 32 * isolated A/D 80 0A 00

PISO-DA2 2 * isolated D/A 80 0B 00

Note: the sub-IDs will be added more & more without notice. The user can refer to

PIO.H for the newest information.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 29

3.1.2 PIO_GetConfigAddressSpace

PIO_GetConfigAddressSpace(wBoardNo,*wBase,*wIrq, *wSubVendor,

 *wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)

• wBoardNo=0 to N ! totally N+1 boards found by PIO_DriveInit(….)

• wBase ! base address of the board control word

• wIrq ! allocated IRQ channel number of this board

• wSubVendor ! subVendor ID of this board

• wSubDevice ! subDevice ID of this board

• wSubAux ! subAux ID of this board

• wSlotBus ! hardware slot ID1 of this board

• wSlotDevice ! hardware slot ID2 of this board

The user can use this function to save resource of all PIO/PISO cards installed in

this system. Then the application program can control all functions of PIO/PISO series

card directly.

The sample program source is given as follows:

/* step1: detect all PISO-730 cards first */

wSubVendor=0x80; wSubDevice=8; wSubAux=0x40; /* for PISO-730 */

wRetVal=PIO_DriverInit(&wBoards, wSubVendor,wSubDevice,wSubAux);

printf("Threr are %d PISO-730 Cards in this PC\n",wBoards);

/* step2: save resource of all PISO-730 cards installed in this PC */

for (i=0; i<wBoards; i++)

 {

 PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&t1,&t2,&t3,&t4,&t5);

 printf("\nCard_%d: wBase=%x, wIrq=%x", i,wBase,wIrq);

 wConfigSpace[i][0]=wBaseAddress; /* save all resource of this card */

 wConfigSpace[i][1]=wIrq; /* save all resource of this card */

 }

/* step3: control the PISO-730 directly */

wBase=wConfigSpace[0][0];/* get base address the card_0 */

outport(wBase,1); /* enable all D/I/O operation of card_0 */

wBase=wConfigSpace[1][0];/* get base address the card_1 */

outport(wBase,1); /* enable all D/I/O operation of card_1 */

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 30

3.1.3 Show_PIO_PISO

Show_PIO_PISO(wSubVendor,wSubDevice,wSubAux)

• wSubVendor ! subVendor ID of board to find

• wSubDevice ! subDevice ID of board to find

• wSubAux ! subAux ID of board to find

This function will show a text string for this special subIDs. This text string is the same

as that defined in PIO.H

The demo program is given as follows:

wRetVal=PIO_DriverInit(&wBoards,0xff,0xff,0xff); /*find all PIO_PISO*/
printf("\nThrer are %d PIO_PISO Cards in this PC",wBoards);
if (wBoards==0) exit(0);

printf("\n---");
for(i=0; i<wBoards; i++)
 {
 PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&wSubVendor,
 &wSubDevice,&wSubAux,&wSlotBus,&wSlotDevice);

 printf("\nCard_%d:wBase=%x,wIrq=%x,subID=[%x,%x,%x],
 SlotID=[%x,%x]",i,wBase,wIrq,wSubVendor,wSubDevice,
 wSubAux,wSlotBus,wSlotDevice);
 printf(" --> ");
 ShowPioPiso(wSubVendor,wSubDevice,wSubAux);
 }

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 31

3.2 The Assignment of I/O Address
The plug & play BIOS will assign the proper I/O address to PIO/PISO series card.

If there is only one PIO/PISO board, the user can identify the board as card_0. If there

are two PIO/PISO boards in the system, the user will be very difficult to identify which

board is card_0 ? The software driver can support 16 boards max. Therefore the user

can install 16 boards of PIO/PSIO series in one PC system. How to find the card_0 &

card_1 ?

It is difficult to find the card NO. The simplest way to identify which card is

card_0 is to use wSlotBus & wSlotDevice as follows:

1. Remove all PISO-730 from this PC

2. Install one PISO-730 into the PC’s PCI_slot1, run PIO_PISO.EXE & record the

wSlotBus1 & wSlotDevice1

3. Remove all PISO-730 from this PC

4. Install one PISO-730 into the PC’s PCI_slot2, run PIO_PISO.EXE & record the

wSlotBus2 & wSlotDevice2

5. repeat (3) & (4) for all PCI_slot?, record all wSlotBus? & wSlotDevice?

The records may be as follows:

PC’s PCI slot wSlotBus wSlotDevice

Slot_1 0 0x07

Slot_2 0 0x08

Slot_3 0 0x09

Slot_4 0 0x0A

PCI-BRIDGE

Slot_5 1 0x0A

Slot_6 1 0x08

Slot_7 1 0x09

Slot_8 1 0x07

The above procedure will record all wSlotBus? & wSlotDevice? in this PC. These

values will be mapped to this PC’s physical slot. This mapping will not be changed for

any PIO/PISO cards. So it can be used to identify the specified PIO/PISO card as

follows:

Step1: Record all wSlotBus? & wSlotDevice?

Step2: Use PIO_GetConfigAddressSpace(…) to get the specified card’s wSlotBus &

wSlotDevice

Step3: The user can identify the specified PIO/PISO card if he compare the

wSlotBus & wSlotDevice in step2 to step1.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 32

3.3 The I/O Address Map

The I/O address of PIO / PISO series card is automatically assigned by the

main board ROM BIOS. The I/O address can also be re-assigned by user. It is

strongly recommended not to change the I/O address by user. The

plug&play BIOS will assign proper I/O address to each PIO/PISO series

card very well. The I/O address of PISO-730 are given as follows:

Address Read Write

wBase+0 RESET\ control register Same

wBase+2 Aux control register Same

wBase+3 Aux data register Same

wBase+5 INT mask control register Same

wBase+7 Aux pin status register Same

wBase+0x2a INT polarity control register Same

wBase+0xc0 IDI0∼ IDI7 IDO0∼ IDO7

wBase+0xc4 IDI8∼ IDI15 IDO8∼ IDO15

wBase+0xc8 DI0∼ DI7 DO0∼ DO7

wBase+0xcc DI8∼ DI15 DO8∼ DO15

Note. Refer to Sec. 3.1 for more information about wBase.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 33

3.3.1 RESET\ Control Register

(Read/Write): wBase+0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved RESET\

Note. Refer to Sec. 3.1 for more information about wBase.

When the PC is first power-up, the RESET\ signal is in Low-state. This will disable all

D/I/O operations. The user has to set the RESET\ signal to High-state before any D/I/O

command.

outportb(wBase,1); /* RESET\ = High ! all D/I/O are enable now */

outportb(wBase,0); /* RESET\ = Low ! all D/I/O are disable now */

3.3.2 AUX Control Register

(Read/Write): wBase+2

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Aux7 Aux6 Aux5 Aux4 Aux3 Aux2 Aux1 Aux0

Note. Refer to Sec. 3.1 for more information about wBase.

Aux?=0! this Aux is used as a D/I

Aux?=1! this Aux is used as a D/O

When the PC is first power-on, All Aux? signal are in Low-state. All Aux? are

designed as D/I for all PIO/PISO series. Please set all Aux? in D/I state.

3.3.3 AUX data Register

(Read/Write): wBase+3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Aux7 Aux6 Aux5 Aux4 Aux3 Aux2 Aux1 Aux0

Note. Refer to Sec. 3.1 for more information about wBase.

When the Aux? is used as D/O, the output state is controlled by this register. This

register is designed for feature extension, so don’t control this register now.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 34

3.3.4 INT Mask Control Register

(Read/Write): wBase+5

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 EN1 EN0

Note. Refer to Sec. 3.1 for more information about wBase.

EN0/1=0! disable INT_CHAN_0/1 as a interrupt signal (default)

EN0/1=1! enable INT_CHAN_0/1 as a interrupt signal

outportb(wBase+5,0); /* disable all interrupts */

outportb(wBase+5,1); /* enable interrupt of INT_CHAN_0 */

outportb(wBase+5,2); /* enable interrupt of INT_CHAN_1 */

outportb(wBase+5,3); /* enable all two channels of interrupt */

Refer to the following demo program for more information:

DEMO3.C ! for INT_CHAN_0 only (initial high state)

DEMO4.C ! for INT_CHAN_0 only (initial low state)

DEMO5.C ! for multi-channel interrupt source

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 35

3.3.5 Aux Status Register

(Read/Write): wBase+7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Aux7 Aux6 Aux5 Aux4 Aux3 Aux2 Aux1 Aux0

Note. Refer to Sec. 3.1 for more information about wBase.

Aux0=INT_CHAN_0, Aux1=INT_CHAN_1, Aux7~4=Aux-ID. Refer to Sec. 4.1

for more information. The Aux0~1 are used as interrupt sources. The interrupt service

routine has to read this register for interrupt source identification. Refer to Sec. 2.5 for

more information.

3.3.6 Interrupt Polarity Control Register

(Read/Write): wBase+0x2A

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 INV1 INV0

Note. Refer to Sec. 3.1 for more information about wBase.

INV0/1=0! select the invert signal from INT_CHAN_0/1

INV0/1=1! select the non-invert signal from INT_CHAN_0/1

outportb(wBase+0x2a,0); /* select the invert input from all 2 channels */

outportb(wBase+0x2a,0x3); /* select the non-invert input from all 2 channels */

outportb(wBase+0x2a,0x2); /* select the inverted input of INT_CHAN_0 */

/* select the non-inverted input of INT_CHAN_1 */

Refer to Sec. 2.6.7 for more information.
Refer to DEMO5.C for more information.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 36

3.3.7 I/O Data Register

(Read/Write): wBase+0xC0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IDI7 IDI6 IDI5 IDI4 IDI3 IDI2 IDI1 IDI0

(Read/Write): wBase+0xC4

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IDI15 IDI14 IDI13 IDI12 IDI11 IDI10 IDI9 IDI8

(Read/Write): wBase+0xC8

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

(Read/Write): wBase+0xCC

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8

Note. Refer to Sec. 3.1 for more information about wBase.

outportb(wBase+0xc0,0xff); /* write 0xff to IDO0~IDO7 */

DiValue=inportb(wBase+0xc0); /* read states from IDI0~IDI7 */

outportb(wBase+0xc8,0x55); /* write 0x55 to DO0~DO7 */

DiValue=inportb(wBase+0xcc); /* read states from DI8~DI15 */

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 37

4. Demo Program
 It is recommended to read the release note first. All important information will be

given in release note as follows:

1. where you can find the software driver & utility

2. how to install software & utility

3. where is the diagnostic program

4. FAQ

There are many demo programs given in the company floppy disk or CD. After

the software installation, the driver will be installed into disk as follows:

• \TC*.* ! for Turbo C 2.xx or above

• \MSC*.* ! for MSC 5.xx or above

• \BC*.* ! for BC 3.xx or above

• \TC\LIB*.* ! for TC library

• \TC\DEMO*.* ! for TC demo program

• \TC\DIAG*.* ! for TC diagnostic program

• \TC\LIB\Large*.* ! TC large model library

• \TC\LIB\Huge*.* ! TC huge model library

• \TC\LIB\Large\PIO.H ! TC declaration file

• \TC\\LIB\Large\TCPIO_L.LIB ! TC large model library file

• \TC\LIB\Huge\PIO.H ! TC declaration file

• \TC\\LIB\Huge\TCPIO_H.LIB ! TC huge model library file

• \MSC\LIB\Large\PIO.H ! MSC declaration file

• \MSC\LIB\Large\MSCPIO_L.LIB ! MSC large model library file

• \MSC\LIB\Huge\PIO.H ! MSC declaration file

• \MSC\\LIB\Huge\MSCPIO_H.LIB ! MSC huge model library file

• \BC\LIB\Large\PIO.H ! BC declaration file

• \BC\LIB\Large\BCPIO_L.LIB ! BC large model library file

• \BC\LIB\Huge\PIO.H ! BC declaration file

• \BC\\LIB\Huge\BCPIO_H.LIB ! BC huge model library file

NOTE: The library is available for all PIO/PISO series cards.

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 38

4.1 PIO_PISO
/* -- */
/* Find all PIO_PISO series cards in this PC system */
/* step 1 : plug all PIO_PISO cards into PC */
/* step 2 : run PIO_PISO.EXE */
/* -- */

#include "PIO.H"

WORD wBase,wIrq;
WORD wBase2,wIrq2;

int main()
{
int i,j,j1,j2,j3,j4,k,jj,dd,j11,j22,j33,j44;
WORD wBoards,wRetVal;
WORD wSubVendor,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
char c;
float ok,err;

clrscr();
wRetVal=PIO_DriverInit(&wBoards,0xff,0xff,0xff); /*for PIO-PISO*/
printf("\nThrer are %d PIO_PISO Cards in this PC",wBoards);
if (wBoards==0) exit(0);

printf("\n---");
for(i=0; i<wBoards; i++)
 {
 PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&wSubVendor,
 &wSubDevice,&wSubAux,&wSlotBus,&wSlotDevice);

 printf("\nCard_%d:wBase=%x,wIrq=%x,subID=[%x,%x,%x],
 SlotID=[%x,%x]",i,wBase,wIrq,wSubVendor,wSubDevice,
 wSubAux,wSlotBus,wSlotDevice);
 printf(" --> ");
 ShowPioPiso(wSubVendor,wSubDevice,wSubAux);
 }

PIO_DriverClose();
}

NOTE: the PIO_PISO.EXE is valid for all PIO/PISO cards. It can be find in the

\TC\DIAG\ directory. The user can execute the PIO_PISO.EXE to get the following

information:

• List all PIO/PISO cards installed in this PC

• List all resources allocated to every PIO/PISO cards

• List the wSlotBus & wSlotDevice for specified PIO/PISO card identification.

(refer to Sec. 3.2 for more information)

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 39

4.1.1 PIO_PISO.EXE for Windows

 There has an software utility “PIO_PISO.EXE” for Windows95/98 for the detailed

information about this file, please refer to the “Readme.txt” of development toolkit for

Windows95/98. It is useful for all PIO/PIS series card.

 The setup steps from the CD-ROM are given as follows:

• Step1: Toolkit(Software)/Manuals

• Step2: T Agree

• Step3: PCI Bus DAQ Card

• Step4: PIO_PISO

• Step5: Install Toolkits for Windows95/98

• Step6: After installation, this program will be extracted in user define directory.

 After executing the utility, every detail information for all PIO/PISO cards that

installed in the PC will be shown as follows:

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 40

4.2 DEMO1
/* DEMO1.C : PISO-730 D/O demo */
/* step 1 : connect CON3 to DB-16R */
/* step 2 : run DEMO1.EXE */
/* -- */
#include "PIO.H"
void piso_730_do(long lDoValue);
void piso_730_ido(long lDoValue);
WORD wBase,wIrq;
int main()
{
int i,j,k1,k2,l1,l2,jj,dd,j1,i1,j2,i2;
WORD wBoards,wRetVal,t1,t2,t3,t4,t5;
WORD wSubVendor,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
long lOutPad1,lOutPad2;
char c;

clrscr();
/* step 1: find address-mapping of PIO/PISO cards */
wRetVal=PIO_DriverInit(&wBoards,0x80,0x08,0x40); /* for PISO-730 */
printf("\nThrer are %d PISO-730 Cards in this PC",wBoards);
if (wBoards==0) exit(0);
printf("\n--------------- The Configuration Space ---------------");
for(i=0; i<wBoards; i++)
 {
 PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&wSubVendor,&wSubDevice,
 &wSubAux,&wSlotBus,&wSlotDevice);
 printf("\nCard_%d: wBase=%x,wIrq=%x,subID=[%x,%x,%x],SlotID=
 [%x,%x]",i,wBase,wIrq,wSubVendor,wSubDevice,wSubAux,
 wSlotBus,wSlotDevice);
 printf(" --> ");
 ShowPioPiso(wSubVendor,wSubDevice,wSubAux);
 }

PIO_GetConfigAddressSpace(0,&wBase,&wIrq,&t1,&t2,&t3,&t4,&t5);
/* step 2: enable all D/I/O port */
outportb(wBase,1); /* enable D/I/O */

printf("\n\n");
lOutPad1=1;
lOutPad2=0x8000;
for(;;)
 {
 gotoxy(1,6);
 piso_730_do(lOutPad1);
 printf("\nOutput DO[0..15] = [%4lx]",lOutPad1);
 piso_730_ido(lOutPad2);
 printf("\nOutput IDO[0..15] = [%4lx]",lOutPad2);

 delay(12000);
 lOutPad1=((lOutPad1<<1)&0xffff);
 lOutPad2=((lOutPad2>>1)&0xffff);

 if (lOutPad1==0) {lOutPad1=1;lOutPad2=0x8000;}
 if (kbhit()!=0) break;
 }
PIO_DriverClose();
}

/* -- */
void piso_730_do(long lDoValue)
{
outportb(wBase+0xc8,(lDoValue&0xff));

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 41

outportb(wBase+0xcc,((lDoValue>>8)&0xff));
}
/* -- */
void piso_730_ido(long lDoValue)
{
outportb(wBase+0xc0,(lDoValue&0xff));
outportb(wBase+0xc4,((lDoValue>>8)&0xff));
}

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 42

4.3 DEMO2
/* DEMO2.C : PISO-730 D/I/O demo */
/* step 1 : connect DO[0..15] to DI[0..15], */
/* IDO[0..15] to IDI[0..15] */
/* step 2 : run DEMO2.EXE */
/* -- */
#include "PIO.H"
long piso_730_di(void);
long piso_730_idi(void);
WORD wBase,wIrq;
int main()
{
int i,j,k,k1,k2,l1,l2,jj,dd,j1,i1,j2,i2;
WORD wBoards,wRetVal,t1,t2,t3,t4,t5;
WORD wSubVendor,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
long lOutPad1,lOutPad2,lInPad1,lInPad2;
char c;
clrscr();
/* step 1: find address-mapping of PIO/PISO cards */
 .
 .
/* step 2: enable all D/I/O port */
outportb(wBase,1); /* enable D/I/O */
lOutPad1=0x0001;
lOutPad2=0x8000;
for(;;)
 {
 gotoxy(1,8);
 piso_730_do(lOutPad1);
 lInPad1=piso_730_di();
 piso_730_ido(lOutPad2);
 delay(10000);
 lInPad2=piso_730_idi();
 printf("\n DO[0..15]=[%4lx] , DI[0..15]=[%4lx]",lOutPad1,lInPad1);
 printf("\nIDO=[%4lx],!IDI=[%4lx]",lOutPad2,(~lInPad2&0xffff));
 lOutPad1=(lOutPad1<<1)&0xffff;
 lOutPad2=(lOutPad2>>1)&0xffff;
 if (lOutPad1==0) lOutPad1=1;
 if (lOutPad2==0) lOutPad2=0x8000;
 if (kbhit()!=0) break;
 }
PIO_DriverClose();
}
/* -- */
long piso_730_di(void)
{
long lDiValue;
lDiValue=(inportb(wBase+0xcc)<<8);
lDiValue=(lDiValue|(inportb(wBase+0xc8)))&0xffff;
return(lDiValue);
}
/* -- */
long piso_730_idi(void)
{
long lDiValue;
lDiValue=(inportb(wBase+0xc4)<<8);
lDiValue=(lDiValue|(inportb(wBase+0xc0)))&0xffff;
return(lDiValue);
}

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 43

4.4 DEMO3
/* DEMO3.C : PISO-730 Interrupt (DI0 initial high) */
/* step 1 : DI0 to function generator */
/* step 2 : run DEMO3.EXE */
/* -- */
#include "PIO.H"
#define A1_8259 0x20
#define A2_8259 0xA0
#define EOI 0x20

WORD init_high();
void interrupt (*oldfunc) ();
static void interrupt irq_service();
int COUNT_L,COUNT_H,irqmask,now_int_state;

void piso_730_do(long lDoValue);
long piso_730_di(void);
void piso_730_ido(long lDoValue);
long piso_730_idi(void);

WORD wBase,wIrq;

int main()
{
int i,j,k,k1,k2,l1,l2,jj,dd,j1,i1,j2,i2;
WORD wBoards,wRetVal,t1,t2,t3,t4,t5;
WORD wSubVendor,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
char c;

clrscr();
/* step 1: find address-mapping of PIO/PISO cards */
 .
 .
/* step 2: enable all D/I/O port */
outportb(wBase,1); /* enable D/I/O */

init_high();

printf("\n\n***** show the count of Low_pulse *****\n");
for(;;)
 {
 gotoxy(1,8);
 printf("\nCOUNT_L=[%5d]",COUNT_L);
 if (kbhit()!=0) break;
 }

disable();

outportb(wBase+5,0); /* disable all interrupt */
if (wIrq<8)
 {
 setvect(wIrq+8,oldfunc);
 }
else
 {
 setvect(wIrq-8+0x70,oldfunc);
 }
PIO_DriverClose();
}
/* -- */
WORD init_high()
{
DWORD dwVal;

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 44

disable();
outportb(wBase+5,0); /* disable all interrupt */

if (wIrq<8)
 {
 oldfunc=getvect(wIrq+8);
 irqmask=inportb(A1_8259+1);
 outportb(A1_8259+1,irqmask & (0xff ^ (1 << wIrq)));
 setvect(wIrq+8, irq_service);
 }
else
 {
 oldfunc=getvect(wIrq-8+0x70);
 irqmask=inportb(A1_8259+1);
 outportb(A1_8259+1,irqmask & 0xfb); /* IRQ2 */
 irqmask=inportb(A2_8259+1);
 outportb(A2_8259+1,irqmask & (0xff ^ (1 << (wIrq-8))));
 setvect(wIrq-8+0x70, irq_service);
 }

outportb(wBase+0x2a,0); /* invert DI0 */

now_int_state=0x1; /* now DI0 is high */
outportb(wBase+5,0x1); /* enable DI0 interrupt */
enable();
}

/* -- */
void interrupt irq_service()
{
if (now_int_state==1) /* now DI0 change to low */
 { /* INT_CHAN_0 = !DI0 */
 COUNT_L++; /* find a low pulse (DI0) */
 if ((inportb(wBase+7)&1)==0) /* DI0 still fixed in low */
 { /* need to generate a high pulse */
 outportb(wBase+0x2a,1); /* INV0 select noninverted input */
 now_int_state=0; /* now DI0=low */
 }
 else now_int_state=1; /* now DI0=High */
 }
else /* now DI0 change to high */
 { /* INT_CHAN_0 = DI0 */
 COUNT_H++; /* find a high pulse (DI0) */
 if ((inportb(wBase+7)&1)==1) /* DI0 still fixed in high */
 { /* need to generate a high pulse */
 outportb(wBase+0x2a,0); /* INV0 select inverted input */
 now_int_state=1; /* now DI0=high */
 }
 else now_int_state=0; /* now DI0=low */
 }
if (wIrq>=8) outportb(A2_8259,0x20);
outportb(A1_8259,0x20);
}

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 45

4.5 DEMO4
/* DEMO4.C : PISO-730 Interrupt (DI0 initial low) */
/* step 1 : DI0 to function generator */
/* step 2 : run DEMO4.EXE */
/* -- */
#include "PIO.H"

#define A1_8259 0x20
#define A2_8259 0xA0
#define EOI 0x20

WORD init_low();
void interrupt (*oldfunc) ();
static void interrupt irq_service();
int COUNT_L,COUNT_H,irqmask,now_int_state;

void piso_730_do(long lDoValue);
long piso_730_di(void);
void piso_730_ido(long lDoValue);
long piso_730_idi(void);

WORD wBase,wIrq;

int main()
{
int i,j,k,k1,k2,l1,l2,jj,dd,j1,i1,j2,i2;
WORD wBoards,wRetVal,t1,t2,t3,t4,t5;
WORD wSubVendor,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
char c;

clrscr();
/* step 1: find address-mapping of PIO/PISO cards */
 .
 .
/* step 2: enable all D/I/O port */
outportb(wBase,1); /* enable D/I/O */

init_Low();

printf("\n\n***** show the count of High_pulse *****\n");
for(;;)
 {
 gotoxy(1,8);
 printf("\nCOUNT_H=[%5d]",COUNT_H);
 if (kbhit()!=0) break;
 }
disable();
outportb(wBase+5,0); /* disable all interrupt */
if (wIrq<8)
 {
 setvect(wIrq+8,oldfunc);
 }
else
 {
 setvect(wIrq-8+0x70,oldfunc);
 }
PIO_DriverClose();
}
/* -- */
WORD init_low()
{
DWORD dwVal;

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 46

disable();
outportb(wBase+5,0); /* disable all interrupt */

if (wIrq<8)
 {
 oldfunc=getvect(wIrq+8);
 irqmask=inportb(A1_8259+1);
 outportb(A1_8259+1,irqmask & (0xff ^ (1 << wIrq)));
 setvect(wIrq+8, irq_service);
 }
else
 {
 oldfunc=getvect(wIrq-8+0x70);
 irqmask=inportb(A1_8259+1);
 outportb(A1_8259+1,irqmask & 0xfb); /* IRQ2 */
 irqmask=inportb(A2_8259+1);
 outportb(A2_8259+1,irqmask & (0xff ^ (1 << (wIrq-8))));
 setvect(wIrq-8+0x70, irq_service);
 }
outportb(wBase+0x2a,1); /* non-invert DI0 */
now_int_state=0x0; /* now DI0 is low */
outportb(wBase+5,0x1); /* enable DI0 interrupt */
enable();
}
/* -- */
void interrupt irq_service()
{
if (now_int_state==1) /* now DI0 change to low */
 { /* INT_CHAN_0 = !DI0 */
 COUNT_L++; /* find a low pulse (DI0) */
 if ((inportb(wBase+7)&1)==0) /* DI0 still fixed in low */
 { /* need to generate a high pulse */
 outportb(wBase+0x2a,1); /* INV0 select noninverted input */
 now_int_state=0; /* now DI0=low */
 }
 else now_int_state=1; /* now DI0=High */
 }
else /* now DI0 change to high */
 { /* INT_CHAN_0 = DI0 */
 COUNT_H++; /* find a high pulse (DI0) */
 if ((inportb(wBase+7)&1)==1) /* DI0 still fixed in high */
 { /* need to generate a high pulse */
 outportb(wBase+0x2a,0); /* INV0 select inverted input */
 now_int_state=1; /* now DI0=high */
 }
 else now_int_state=0; /* now DI0=low */
 }
if (wIrq>=8) outportb(A2_8259,0x20);
outportb(A1_8259,0x20);
}

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 47

4.6 DEMO5
/* DEMO5.C : PISO-730 Interrupt (Multi interrupt source) */
/* DI0 : initial low , DI1 : initial high */
/* step 1 : connect DI0 & DI1 to function generator */
/* step 2 : run DEMO5.EXE */
/* -- */
#include "PIO.H"

#define A1_8259 0x20
#define A2_8259 0xA0
#define EOI 0x20

WORD init();
void interrupt (*oldfunc) ();
static void interrupt irq_service();
int irqmask,now_int_state,new_int_state,invert,int_c,int_num;
int CNT_L1,CNT_L2,CNT_H1,CNT_H2;

WORD wBase,wIrq;

int main()
{
int i,j,k;
WORD wBoards,wRetVal,t1,t2,t3,t4,t5;
WORD wSubVendor,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
char c;

clrscr();
/* step 1: find address-mapping of PIO/PISO cards */
 .
 .
/* step 2: enable all D/I/O port */
outportb(wBase,1); /* enable D/I/O */
init();
printf("\n\n***** show the count of High_pulse *****\n");
for(;;)
 {
 gotoxy(1,8);
 printf("\nCNT_L1,CNT_L2=[%5d,%5d]",CNT_L1,CNT_L2);
 printf("\nCNT_H1,CNT_H2=[%5d,%5d]",CNT_H1,CNT_H2);
 if (kbhit()!=0) break;
 }
disable();
outportb(wBase+5,0); /* disable all interrupt */
if (wIrq<8)
 {
 setvect(wIrq+8,oldfunc);
 }
else
 {
 setvect(wIrq-8+0x70,oldfunc);
 }
PIO_DriverClose();
}
/* -- */
WORD init()
{
DWORD dwVal;
disable();
outportb(wBase+5,0); /* disable all interrupt */
if (wIrq<8)
 {
 oldfunc=getvect(wIrq+8);

PISO-730 User Manual (Ver. 1.0,12/30/99) ----- 48

 irqmask=inportb(A1_8259+1);
 outportb(A1_8259+1,irqmask & (0xff ^ (1 << wIrq)));
 setvect(wIrq+8, irq_service);
 }
else
 {
 oldfunc=getvect(wIrq-8+0x70);
 irqmask=inportb(A1_8259+1);
 outportb(A1_8259+1,irqmask & 0xfb); /* IRQ2 */
 irqmask=inportb(A2_8259+1);
 outportb(A2_8259+1,irqmask & (0xff ^ (1 << (wIrq-8))));
 setvect(wIrq-8+0x70, irq_service);
 }
invert=0x1;
outportb(wBase+0x2a,invert); /* non-invert DI0 */
 /* invert DI1 */
now_int_state=0x2; /* now DI0 is low */
 /* now DI1 is high */
outportb(wBase+5,0x3); /* enable all interrupt */
enable();
}
/* -- */
void interrupt irq_service()
{
int_num++;
new_int_state=inportb(wBase+7)&0x3;
int_c=new_int_state^now_int_state;
if ((int_c&0x1)!=0) /* now INT_CHAN_0 change to high */
 {
 if ((new_int_state&0x01)!=0)
 {
 CNT_H1++;
 }
 else /* now INT_CHAN_0 change to low */
 {
 CNT_L1++;
 }
 invert=invert^1; /* generate a high pulse */
 }
if ((int_c&0x2)!=0) /* now INT_CHAN_1 change to high */
 {
 if ((new_int_state&0x02)!=0)
 {
 CNT_H2++;
 }
 else /* now INT_CHAN_1 change to low */
 {
 CNT_L2++;
 }
 invert=invert^2; /* generate a high pulse */
 }
now_int_state=new_int_state;
outportb(wBase+0x2a,invert);
if (wIrq>=8) outportb(A2_8259,0x20);
outportb(A1_8259,0x20);
}

	Introduction
	Features
	Specifications
	Order Description
	Options

	PCI Data Acquisition Family
	Product Check List

	Hardware configuration
	Board Layout
	I/O Operation
	Non-isolated DO Port Architecture (CON3)
	Non-isolated DI Port Architecture (CON2)
	Isolated DO Port Architecture (CON1)
	Isolated DI Port Architecture (CON1)

	Interrupt Operation
	Interrupt Block Diagram of PISO-730
	INT_CHAN_0
	INT_CHAN_1
	Initial_high, active_low Interrupt source
	Initial_low, active_high Interrupt source
	Multiple Interrupt Source

	Daughter Boards
	DB-16P Isolated Input Board
	DB-16R Relay Board
	DB-24PR, DB-24POR, DB-24C
	Daughter Board Comparison Table

	Pin Assignment
	Isolated I/O connector
	JP1
	TTL-level I/O connector

	I/O Control Register
	How to Find the I/O Address
	PIO_DriverInit
	PIO_GetConfigAddressSpace
	Show_PIO_PISO

	The Assignment of I/O Address
	The I/O Address Map
	RESET\ Control Register
	AUX Control Register
	AUX data Register
	INT Mask Control Register
	Aux Status Register
	Interrupt Polarity Control Register
	I/O Data Register

	Demo Program
	PIO_PISO
	PIO_PISO.EXE for Windows

	DEMO1
	DEMO2
	DEMO3
	DEMO4
	DEMO5

