

V1.3.1

 June 2023

LinPAC

Standard API User Manual

LinPAC Standard API Manual version 1.3.1 Page: 2

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Warranty

All products manufactured by ICP DAS Inc. are warranted against defective

materials for a period of one year from the date of delivery to the original

purchaser.

Warning

ICP DAS Inc. assume no liability for any damage consequent to the use of this

product. ICP DAS Inc. reserves the right to change this manual at any time

without notice. The information furnished by ICP DAS Inc. is believed to be

accurate and reliable. However, no responsibility is assumed by ICP DAS Co., Ltd.

for its use, nor for any infringements of patents or other rights of third parties

resulting from its use.

Copyright

Copyright @ 2019 by ICP DAS Co., Ltd. All rights are reserved.

Trademark

Names are used for identification purposes only and maybe registered

trademarks of their respective companies.

Contact US

If you have any problem, please feel free to contact us.

You can count on us for quick response.

 Email: service@icpdas.com

LinPAC Standard API Manual version 1.3.1 Page: 3

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Contents

1. Getting Started ... 6

1.1. Introduction the LinPAC SDK .. 6

1.1.1. Introduction to Cygwin .. 6

1.1.2 Introduction to Cross-Compilation ... 7

1.1.3. Download the LinPAC SDK ... 8

1.2. The Architecture of LIBI8K.A in the Linux PAC .. 9

1.3. Setting up the Development Environment ... 10

1.3.1. LinPAC PXA270 Series .. 10

1.3.2. LinPAC AM335x Series ... 20

1.3.3. LinPAC X86/E38xx/iMX8MM Series ... 29

2. System Information Functions .. 30

2.1. Open_Slot ... 32

2.2. Close_Slot ... 33

2.3. Open_SlotAll ... 34

2.4. Close_SlotAll ... 35

2.5. ChangeToSlot .. 36

2.6. GetModuleType .. 37

2.7. sio_open ... 38

2.8. sio_close ... 40

2.9. sio_set_noncan ... 42

2.10. Read_SN .. 43

2.11. Open_Com .. 44

2.12. Close_Com .. 46

2.13. Send_Receive_Cmd .. 47

2.14. Send_Cmd ... 50

2.15. Receive_Cmd .. 52

2.16. Send_Binary .. 54

2.17. Receive_Binary ... 56

2.18. GetBackPlaneID .. 58

2.19. GetSDKversion .. 59

2.20. GetSlotCount .. 60

2.21. GetNameOfModule .. 61

2.22. GetNameOfModule_9K .. 62

LinPAC Standard API Manual version 1.3.1 Page: 4

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.23. GetNameOfModule_xw .. 63

2.24. GetDIPswitch .. 64

2.25. SetLED ... 65

2.26. SetLED_Single ... 68

2.27. GetRotaryID .. 69

2.28. rotary_switch_read .. 71

2.29. Read_SRAM .. 73

2.30. Write_SRAM ... 74

2.31. EnableWDT ... 75

2.32. DisableWDT .. 76

2.33. WatchDogSWEven .. 77

2.34. ClearWDTSWEven ... 78

2.35. RefreshWDT .. 79

3. Digital Input/Output Functions ... 80

3.1. For I-8000/9000 modules via parallel port ... 84

3.1.1 DO_8 ... 84

3.1.2 DO_16 ... 85

3.1.3. DO_32 .. 86

3.1.4 ReadDI ... 87

3.1.5 DI_8 ... 88

3.1.6 DI_16 ... 89

3.1.7 DI_32 ... 90

3.1.8 DIO_DO_8 ... 91

3.1.9 DIO_DO_16 ... 92

3.1.10 DIO_DI_8 ... 93

3.1.11 DIO_DI_16 ... 94

3.1.12 DO_8_RB, DO_16_RB, DO_32_RB, DIO_DO_8_RB, DIO_DO_16_RB 95

3.1.13 DO_8_BW, DO_16_ BW, DO_32_ BW, DIO_DO_8_ BW, DIO_DO_16_ BW 96

3.1.14 DI_8_BW、DI_16_ BW、DI_32_ BW ... 98

3.1.15 UDIO_WriteConfig_16 .. 99

3.1.16 UDIO_ReadConfig_16 ...100

3.1.17 UDIO_DO16 ..101

3.1.18 UDIO_DI16 ..102

3.1.19 ReadDI_LPF ...103

3.1.20 WriteDI_LPF ..104

3.2. For I-7000/I-8000/I-9000/I-87000 modules via serial port ..105

LinPAC Standard API Manual version 1.3.1 Page: 5

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.2.1. I-7000 series modules ..105

3.2.2. I-8000 series modules ..128

3.2.3. I-9000 series modules ..142

3.2.4. I-87000 series modules ..156

4. Analog Input Functions ..172

4.1. I-7000 series modules ...174

4.2. I-8000 series modules ...188

4.3. I-9000 series modules ...196

4.4. I-87000 series modules ...204

4.5. I-97000 series modules ...212

5. Analog Output Functions ..220

5.1. I-7000 series modules ...222

5.2. I-8000 series modules ...234

5.3. I-9000 series modules ...244

5.4. I-87000 series modules ...254

5.5. I-97000 series modules ...264

6. Error Code Explanation ..274

7. Demos for I/O Modules using C Language ...275

7.1. DI/DO Control Demo ...276

7.1.1. I-7K Modules ..276

7.1.2. I-87K Modules ..283

7.1.3. I-8K Modules ..285

7.2. AI/AO Control Demo ...286

7.2.1. I-7K Modules ..286

7.2.2. I-87K/97K Modules ..289

7.2.3. I-8K/9K Modules ..291

Appendix ...293

A. Demo for I/O Modules in slots on an I-87K I/O expansion unit ..293

B. Demo for I/O Modules in slots on an I-8000 Controller ..298

C. The old version of the API function ...303

C1. I-8017 API Function..303

C2. I-8024 API Function..326

D. Revision History ...331

LinPAC Standard API Manual version 1.3.1 Page: 6

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1. Getting Started

This chapter provides a guided tour that describes the steps needed to know, download, install

and configure the basic procedures for the user working with the LinPAC SDK for the first time.

1.1. Introduction the LinPAC SDK

This section will discuss some of the techniques that are adopted in the LinPAC SDK, including

detailed explanations that describe how to easily use the LinPAC SDK. The LinPAC SDK is based on

Cygwin and is also a Linux-like environment for Microsoft Windows systems, and provides a

powerful GCC cross-compiler and an IDE (Integrated Development Environment) that enables

LinPAC applications to be quickly developed. Therefore, once an application has been created, the

LinPAC SDK can be used to compile it into an executable file that can be run on the LinPAC

embedded controller.

1.1.1. Introduction to Cygwin

Cygwin is a collection of free software tools originally developed by Cygnus Solutions to allow

various versions of Microsoft Windows to act somewhat like a UNIX system. Cygwin is a Linux-like

environment for Windows consisting of two parts:

(1) A DLL (cygwin1.dll) which acts as a Linux emulation layer providing substantial Linux API

functionality.

(2) A collection of tools that provide users with the Linux look and feel.

LinPAC Standard API Manual version 1.3.1 Page: 7

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.1.2 Introduction to Cross-Compilation

Generally, program compilation is performed by running a compiler on the build platform. The

compiled program will then run on the target platform. Usually, these two processes are intended

for use on the same platform. However, if the intended platform is different, the process is called

cross compilation, where source code on one platform can be compiled into executable files to be

used on other platforms. For example, if the ‘arm-linux-gcc’ cross-compiler is used on an x86

windows platform, the source code can be compiled into an executable file that can run on an

arm-linux platform.

So why use cross compilation? In fact, cross compilation is sometimes more complicated than

normal compilation, and errors are easier to make. Therefore, this method is often only employed

if the program cannot be compiled on the target system, or if the program being compiled is so

large that it requires more resources than the target system can provide. For many embedded

systems, cross compilation is the only possible approach.

LinPAC Standard API Manual version 1.3.1 Page: 8

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.1.3. Download the LinPAC SDK

 For Windows systems: Extract the .exe file into to the C:\ driver.

 For Linux systems (running a 32-bit OS): Extract the .bz2 file into to the root (/) directory.

LinPAC Download Path

iMX8MM LP-2841M https://www.icpdas.com/en/download/index.php?model=LP-2841M

AM335x

Series

LP-2x4x

LP-52xx
https://www.icpdas.com/en/download/show.php?num=1195&model=LP-5231M

LP-8x2x

LP-9x2x
https://www.icpdas.com/en/download/show.php?num=915&model=LP-9821

X86/E38xx

 Series
LX-Series https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371

Note:

1) There are six independent LinPAC SDKs above, and different LinPAC cannot share both source

files, library file and compiled files, user should be download the respective LinPAC SDK versions

from the target manager and use them.

2) We recommend user to change user ID to become root by ‘sudo’ or ‘su’ command.

3) Linux 64-bit operating system lacks 32-bit support libraries. If your Linux PC is 64-bit OS, you

must install 32-bit libraries on your system before you run the 32-bit version of the LinPAC SDK

(Linux version).

https://www.icpdas.com/en/download/show.php?num=1195&model=LP-5231M
https://www.icpdas.com/en/download/show.php?num=915&model=LP-9821
https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371

LinPAC Standard API Manual version 1.3.1 Page: 9

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.2. The Architecture of LIBI8K.A in the Linux PAC

The library file libi8k.a is designed for I-7000/8000/9000/87000/97000 applications running on

the LinPAC Embedded Controller based on the Linux operating system and can be applied when

developing custom applications using the GNU C language. ICP DAS provides a wide variety of

demo programs that can be used to easily understand how to implement the functions and

ensure that custom projects and applications can be quickly developed.

The relationships among the libi8k.a and user’s applications are depicted as Figure 1.2-1:

Figure 1.2-1. The relationship between the libi8k.a library and the custom applications

Functions for the LinPAC Embedded Controller are divided into sub-groups for ease of use within

the different applications:

1. System Information Functions 2. Analog Output Functions

3. Digital Input Functions 4. Analog Input Functions

5. Digital Output Functions

The functions contained in the libi8k.a library is specifically designed for the LinPAC controller, and

those functions needed for specific applications can easily be determined from the descriptions

provided and from the demo programs described in chapter 7.

LinPAC Standard API Manual version 1.3.1 Page: 10

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.3. Setting up the Development Environment

The OS of LinPAC series is Linux, and the ‘LinPAC SDK’ is a development toolkit provided by ICP

DAS, which can be used to easily develop custom applications for the LinPAC series embedded

controller platform. The toolkit consists of the following items.

 LinPAC SDK library files

 LinPAC SDK include files

 Demo files

 GNU ToolChain

Refer to the following chapter to download and install the appropriate SDK.

1.3.1. LinPAC PXA270 Series

The topic provides LinPAC PXA270 SDK installation instructions for the following platforms:

 Linux (running a 32-bit operating system)

Download/Install LinPAC PXA270 SDK on Linux

 Windows

Download/Install LinPAC PXA270 SDK on Windows

Integrating LinPAC PXA270 SDK with Code::Blocks IDE

Step LP-2241M/5231/8x2x/9x2x LP-2841M/LX-8000/9000

0. Download SDK on Windows or Linux PC Download SDK on LinPAC

1. Find demo ‘helloworld.c’ in SDK Find demo ‘helloworld.c’ in SDK

2.
Compile the demo on Windows or Linux PC

using SDK
Compile the demo on LinPAC directly

3. Upload and execute the demo on LinPAC
Execute the application on LinPAC at

boot time

4.
Execute the application on LinPAC at boot

time
—

LinPAC Standard API Manual version 1.3.1 Page: 11

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Download/Install LinPAC PXA270 SDK on Linux

1. Before installing the LP-8x4x SDK, several tasks must be completed, as the root user by ‘sudo’

or ‘su’ command.

2. Insert the installation CD into your CD-ROM driver (refer to Figures 1.3.1-1 and 1.3.1-2). Locate

the ‘linpac_pxa270_sdk_for_linux.tar.bz2’ file in the \napdos\lp-8x4x\SDK\ folder, or visit the

ICP DAS website to download the latest version.

 Figure 1.3.1-1. Figure 1.3.1-2.

3. Download SDK in ‘/ (the root directory)’, and try the following command to decompress file.

(refer to Figure 1.3.1-3)

tar jxvf linpac_pxa270_sdk_for_linux.tar.bz2

Figure 1.3.1-3. Decompress ‘.tar.bz2’ file

LinPAC Standard API Manual version 1.3.1 Page: 12

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4. Before compile the program, you need to set LinPAC PXA270 SDK path in environment

variables. To execute the shell startup script and set the environment variables, enter the

following command.

. /lincon/linpac.sh

5. Type ‘make’ on the command line it will execute the compile command according to the

Makefile. (refer to Figure 1.3.1-4)

Figure 1.3.1-4. Compiling demo code according to the Makefile

 Download/Install LinPAC PXA270 SDK on Windows

The LinPAC_PXA270_SDK_for_Windows.exe provides compilers, library, header, examples, and

IDE workspace file (for Code::Blocks project). Following the step by step procedure below will help

users get started.

1. Insert the installation CD into your CD-ROM driver.

2. Open the \napdos\lp-8x4x\SDK\ folder and double-click the icon for the

‘linpac_pxa270_sdk_for_windows.exe’ file, when the Setup Wizard is displayed, click the

‘Next>’ button to continue, refer to Figure 1.3.1-5.

LinPAC Standard API Manual version 1.3.1 Page: 13

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3. Click the ‘I accept the agreement’ option and then click the ‘Next’ button, refer to Figure

1.3.1-6 below.

Figure 1.3.1-5. Figure 1.3.1-6.

4. The ‘LinPAC PXA270 SDK’ files will be extracted and installed and a progress bar will be

displayed to indicate the status, refer to Figure 1.3.1-7.

5. Once the software has been successfully installed, click the ‘Finish’ button to complete the

development toolkit installation, refer to Figure 1.3.1-8.

Figure 1.3.1-7. Figure 1.3.1-8.

LinPAC Standard API Manual version 1.3.1 Page: 14

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

6. Open the LinPAC PXA270 SDK installation directory, the default data directory location is

‘C:\cygwin\’, user can see the contents of folder. Refer to Figure 1.3.1-9.

Figure 1.3.1-9. Open the folder of the LinPAC AM335x

7. Open the ‘C:\cygwin\LinCon8k’ folder and see the content. Refer to Figure 1.3.1-10.

Figure 1.3.1-10. The contents of the folder

8. From the desktop, right-click the shortcut icon for the ‘LinPAC PXA270 Build Environment’

and select ‘Run As Administrator’. Or click the ‘Start’ > ‘Programs’ > ‘ICPDAS’ > ‘LinPAC PXA270

Build Environment’.

A Command Prompt window will then be displayed that allows applications for the LP-8x4x to

be compiled. Refer to Figure 1.3.1-11.

Figure 1.3.1-11. Click the ‘LinPAC_AM335x Build Environment’

LinPAC Standard API Manual version 1.3.1 Page: 15

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

9. Type ‘make’ command (needs run as an administrator). A Command Prompt window will then

be displayed that allows applications for the LP-8x4x to be compiled. Refer to Figure 1.3.1-12.

Figure 1.3.1-12. Compiling demo code according to the Makefile

Once the installation is complete, the library and demo files can be found in the following

locations:

 The path for the Libi8k.a file is ‘C:\cygwin\LinCon8k\lib’.

 The path for the include files file is ‘C:\cygwin\LinCon8k\include’.

 The path for the demo file is ‘C:\cygwin\LinCon8k\examples’.

LinPAC Standard API Manual version 1.3.1 Page: 16

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Integrating LinPAC PXA270 SDK with Code::Blocks IDE

This tutorial gives you easy-to-follow instructions, with screenshots, for setting up a compiler (the

Linaro GCC compiler), a tool that will let you turn the code that you write into programs, and

Code::Blocks IDE, a free development environment. This tutorial explains how to integrate LinPAC

PXA270 SDK with Code::Blocks IDE on Windows platform.

Step 1: Download Code::Blocks IDE.

 Go to this website: http://www.codeblocks.org/downloads/binaries

 Go to the Windows 2000/XP/Vista/7 section, and download Windows version.

Step 2: Install Code::Block IDE.

 The default install location is the C:\Program Files\CodeBlocks folder.

 A complete manual for Code::Blocks is available here:

http://www.codeblocks.org/user-manual

Step 3: Running in Code::Block IDE.

 All files and settings that are included in a LinPAC_PXA270_SDK workspace file.

 Open the C:\cygwin\CodeBlock folder, and double click the ‘LinPAC_PXA270_SDK’ as below

(refer to Figure 1.3.1-13):

Figure 1.3.1-13. Startup the LinPAC AM335x SDK

http://www.codeblocks.org/downloads/binaries
http://www.codeblocks.org/user-manual

LinPAC Standard API Manual version 1.3.1 Page: 17

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Following window will come up (refer to Figure 1.3.1-14):

Figure 1.3.1-14. Startup the LinPAC AM335x SDK

 Check Compiler settings for Linaro GCC cross compiler : Click ‘Settings’ > ‘Compiler’ >

‘Toolchain executables tab’ (refer to Figure 1.3.1-15) :

Figure 1.3.1-15. Check compiler settings

LinPAC Standard API Manual version 1.3.1 Page: 18

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Check Link libraries for Linaro GCC cross compiler : Click ‘Settings’ > ‘Compiler’ > ‘Linker

Settings’ (refer to Figure 1.3.1-16) :

Figure 1.3.1-16. Check Link libraries for Linaro GCC cross compiler

 Check Makefile for Linaro GCC cross compiler : Click ‘Project’ > ‘Properties’ (refer to Figure

1.3.1-17) :

Figure 1.3.1-17. Check Makefile for Linaro GCC cross compiler

LinPAC Standard API Manual version 1.3.1 Page: 19

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Click Build options, and it will compile the LinPAC PXA270 project completely (refer to Figure

1.3.1-18).

Figure 1.3.1-18. Compiling a C program

【Note】

If you observer some characters may not display properly in cmd.exe, change the code page for

the console only, do the following:

 Double-click the shortcut icon for the ‘LinPAC PXA270 Build Environment’.

 Type command: chcp 65001 (Refer to Figures 1.3.1-19 and 1.3.1-20).

Figure 1.3.1-19. Figure 1.3.1-20.

LinPAC Standard API Manual version 1.3.1 Page: 20

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.3.2. LinPAC AM335x Series

The topic provides LinPAC_AM335x SDK installation instructions for the following platforms:

 Linux (running a 32-bit operating system)

Download/Install LinPAC AM335x SDK on Linux

 Windows

Download/Install LinPAC AM335x SDK on Windows

Integrating LinPAC AM335x SDK with Code:: Blocks IDE

 Download/Install LinPAC AM335x SDK on Linux

1. To create a ‘icpdas’ folder in root directory, maybe you need to change the root user by ‘sudo’

or ‘su’ command. (Refer to Figure 1.3.2-1)

Figure 1.3.2-1. Create a directory named ‘icpdas’

2. Visit the ICP DAS website to

download the latest version of

the LinPAC_AM335x SDK --

‘linpac_am335x_sdk_for_linux.t

ar.bz2’ for example.

 Figure 1.3.2-2.

LinPAC Standard API Manual version 1.3.1 Page: 21

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Figure 1.3.2-3.

3. Try the following command to decompress file. (Refer to Figure 1.3.2-4)

tar jxvf linpac_am335x_sdk_for_linux.tar.bz2

Figure 1.3.2-4. Decompress ‘.tar.bz2’ file

4. Before compiling the program, you need to set LinPAC_AM335x SDK path in environment

variables: using the provided environment variable script, which is called linpac_am335x.sh

(Refer to Figure 1.3.2-5).

Figure 1.3.2-5. Setting environment variables for LinPAC_AM335x SDK

LinPAC Standard API Manual version 1.3.1 Page: 22

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5. Type ‘make’ on the command line it will execute the compile command according to the

Makefile. (Refer to Figure 1.3.2-6)

Figure 1.3.2-6. Compiling demo code according to the Makefile

LinPAC Standard API Manual version 1.3.1 Page: 23

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Download/Install LinPAC AM335x SDK on Windows

The LinPAC_AM335x_SDK_for_Windows.exe provides compilers, library, header, examples, and

IDE workspace file (for Code::Blocks project).

1. Download LinPAC AM335x SDK from website.

2. Open the ‘LinPAC_AM335x_SDK_for_Windows.exe’ file, when the Setup Wizard is displayed,

click the ‘Next>’ button to continue, refer to Figures 1.3.2-7 and 1.3.2-8.

Figure 1.3.2-7. Figure 1.3.2-8.

3. Click the ‘I accept the agreement’ option and then click the ‘Next’ button (refer to Figure

1.3.2-9), and select Start Menu Folder option and then click the ‘Next’ button, refer to Figure

1.3.2-10.

Figure 1.3.2-9. Figure 1.3.2-10.

LinPAC Standard API Manual version 1.3.1 Page: 24

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4. The LinPAC_AM335x SDK files will be extracted and installed and a progress bar will be

displayed to indicate the status, refer to Figure 1.3.2-11.

5. Once the software has been successfully installed, click the ‘Finish’ button to complete the

development toolkit installation, refer to Figure 1.3.2-12.

Figure 1.3.2-11. Figure 1.3.2-12.

6. Open the LinPAC_AM335x SDK installation directory, the default data directory location is

‘C:\cygwin\’, the user can see the contents of the folder. Refer to Figures 1.3.2-13 and

1.3.2-14.

Figure 1.3.2-13. Figure 1.3.2-14.

LinPAC Standard API Manual version 1.3.1 Page: 25

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7. From the desktop, double-click the shortcut icon for the ‘LinPAC_AM335x Build Environment’

or click the ‘Start’ > ‘Programs’ > ‘ICPDAS’ > ‘LinPAC_AM335x_SDK’ > ‘LinPAC_AM335x Build

Environment’.

A Command Prompt window will then be displayed that allows applications for the

LinPAC_AM335x to be compiled. Refer to Figures 1.3.2-15 and 1.3.2-16.

Figure 1.3.2-15. Figure 1.3.2-16.

8. Type ‘make’. A Command Prompt window will then be displayed that allows applications for

the LinPAC_AM335x to be compiled. Refer to Figure 1.3.2-17.

Figure 1.3.2-17. Compiling demo code according to the Makefile

LinPAC Standard API Manual version 1.3.1 Page: 26

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Integrating LinPAC AM335x SDK with Code::Blocks IDE

This tutorial gives you easy-to-follow instructions, with screenshots, for setting up a compiler (the

Linaro GCC compiler), a tool that will let you turn the code that you write into programs, and

Code::Blocks IDE, a free development environment. This tutorial explains how to integrate LinPAC

AM335x SDK with Code::Blocks IDE on Windows platform.

Step 1: Download Code::Blocks IDE.

 Go to this website: http://www.codeblocks.org/downloads/binaries

 Go to the Windows 2000/XP/Vista/7 section, and download Windows version.

Step 2: Install Code::Block IDE.

 The default install location is the C:\Program Files\CodeBlocks folder.

 A complete manual for Code::Blocks is available here:

http://www.codeblocks.org/user-manual

Step 3: Running in Code::Block IDE.

 All files and settings that are included in a LinPAC_AM335x_SDK workspace file.

 Open the C:\cygwin\CodeBlock folder, and double click the ‘LinPAC_AM335x_SDK’ as below

(Refer to Figure 1.3.2-18):

Figure 1.3.2-18. Startup the LinPAC AM335x SDK

http://www.codeblocks.org/downloads/binaries
http://www.codeblocks.org/user-manual

LinPAC Standard API Manual version 1.3.1 Page: 27

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Following window will come up (Refer to Figure 1.3.2-19):

Figure 1.3.2-19. Startup the LinPAC AM335x SDK

 Check compiler settings for Linaro GCC cross compiler: Click ‘Settings’ > ‘Compiler’ >

‘Toolchain executables tab’ (Refer to Figure 1.3.2-20):

Figure 1.3.2-20. Check compiler settings

LinPAC Standard API Manual version 1.3.1 Page: 28

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Click Build options, and it will compile the LinPAC_AM335x project completely. (Refer to

Figure 1.3.2-21)

Figure 1.3.2-21. Compiling a C program

【Note】If you observer some characters may not display properly in cmd.exe, change the code

 page for the console only, do the following:

 Double-click the shortcut icon for the ‘LinPAC_AM335x Build Environment’. (Refer to Figure

1.3.2-22)

Figure 1.3.2-22. Click the ‘LinPAC_AM335x Build Environment’

 Type command: chcp 65001. (Refer to Figures 1.3.2-23 and 1.3.2-24)

Figure 1.3.2-23. Figure 1.3.2-24.

LinPAC Standard API Manual version 1.3.1 Page: 29

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

1.3.3. LinPAC X86/E38xx/iMX8MM Series

 Download/Install LinPAC X86/E38xx SDK on Linux

Here is a simple application for using the LX-8000/9000 SDK.

From https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371, you can

download the latest version of LX-8000/9000 SDK. And then follows the below steps in order to

get the development toolkit which has been provided by ICP DAS for the easy application of the

LX-8000/9000 embedded controller platform.

1. User can connect to LX-8000/9000 through communication port (Console, LAN1, LAN2) by

using ‘putty’ software (refer to “CH2. LX-8000/9000 Getting Started").

2. After connecting to LX-8000/9000, the user could type the following command to get the

latest version of LX-8000/9000 SDK.

wget https://www.icpdas.com/en/download/file.php?num=1449

【Note】Please check the network can connect to the ICP DAS official website.

3. To type ‘tar zxf LinPAC_X86_SDK.tar.gz’ to decompress tar file and type ‘make’ to compile

demo code.

Once user decompresses the SDK file, user can find the files for the library and demo in the

following paths.

 The libPAC_x86.a path is ‘LinPAC_X86_SDK/lib’.

 The include files path is ‘LinPAC_X86_SDK/include’.

 The LX-8000/9000 demo path is ‘LinPAC_X86_SDK/examples/lx-series’.

 The LP-8x81/8x81-Atom demo path is ‘LinPAC_X86_SDK/examples/lp-8x81’.

root@icpdas:~# tar zxf LinPAC_X86_SDK.tgz

root@icpdas:~# ls LinPAC_X86_SDK

LinPAC_X86_SDK

root@icpdas:~# cd LinPAC_X86_SDK/

root@icpdas:~/LinPAC_X86_SDK# make

https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371

LinPAC Standard API Manual version 1.3.1 Page: 30

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2. System Information Functions

Supported LinPACs

The table below lists the common API of system information functions that are supported by each

LinPAC. For more details, please refer to the corresponding chapters.

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

Open_Slot ✔ ✔ ✔ ✔ ✔

Close_Slot ✔ ✔ ✔ ✔ ✔

Open_SlotAll ✔ ✔ ✔ ✔ ✔

Close_SlotAll ✔ ✔ ✔ ✔ ✔

ChangeToSlot ✔ ✔ ✔ ✔ ✔

GetModuleType ✔ ✔ ✔ ✔ ✔

sio_open ✔ ✔ ✔ ✔ ✔ ✔ ✔

sio_close ✔ ✔ ✔ ✔ ✔ ✔ ✔

sio_set_noncan ✔ ✔ ✔ ✔ ✔ ✔ ✔

Read_SN ✔ ✔ ✔ ✔ ✔ ✔ ✔

Open_Com ✔ ✔ ✔ ✔ ✔ ✔ ✔

Close_Com ✔ ✔ ✔ ✔ ✔ ✔ ✔

Send_Receive_Cmd ✔ ✔ ✔ ✔ ✔ ✔ ✔

Send_Cmd ✔ ✔ ✔ ✔ ✔ ✔ ✔

Receive_Cmd ✔ ✔ ✔ ✔ ✔ ✔ ✔

Send_Binary ✔ ✔ ✔ ✔ ✔ ✔ ✔

Receive_Binary ✔ ✔ ✔ ✔ ✔ ✔ ✔

GetBackPlaneID ✔ ✔ ✔ ✔ ✔

GetSDKversion ✔ ✔ ✔ ✔ ✔ ✔ ✔

GetSlotCount ✔ ✔ ✔ ✔

GetNameOfModule ✔ ✔ ✔ ✔

GetNameOfModule_9K ✔

LinPAC Standard API Manual version 1.3.1 Page: 31

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Models

 Functions
LP-51xx LP-8x4x LP-2x4x LP-52xx LP-8x2x LP-9x2x LX-Series

GetNameOfModule_xw ✔

GetDIPswitch ✔ ✔ ✔

SetLED ✔ ✔ Refer to AM335x SDK /examples/led.c,

or linpac-am335x_user_manual_en.pdf

✔

SetLED_Single ✔

GetRotaryID ✔ ✔ ✔

rotary_switch_read ✔ ✔ ✔ ✔

Read_SRAM ✔

Write_SRAM ✔

EnableWDT ✔ ✔ Refer to AM335x SDK/examples/wdt.c,

or linpac-am335x_user_manual_en.pdf

✔

DisableWDT ✔ ✔ ✔

Note: LX-Series includes LX-8000 and LX-9000 series.

The table below provides a summary of the various communication functions that can be used

depending on the for the different locations of the I/O modules when using the ICP DAS modules

in conjunction with the Linux PAC.

API() Open_Slot Close_Slot Open_Com Close_Slot ChangeToSlot sio_open sio_close

I-8K

I-9K
✔ ✔

✔ ✔

RS-422/485 Module

I-87K

I-97K
✔ ✔ ✔ ✔ ✔

I-7K ✔ ✔

Note that the Open_slot()/Close_Slot() and sio_open()/sio_close() functions cannot be used for

the same slot.

I/O type

Function

I-8K or I-9K modules

(Parallel Bus)

I-87K or I-97K modules

(Serial Bus)

For example e.g., I-8050W is plug in Slot number 3. e.g., I-87054W is plug in Slot number 3.

Step 1 Open_Slot()  Open_Slot(3); Open_Com()  Open_Com(1)

Step 2 Close_Slot()  Close_Slot(3); Open_Slot(0)  Open_Slot(0)

Step 3 ChangeToSlot()  ChangeToSlot(3)

Step 4 Close_Slot(0)  Close_Slot(0)

Step 5 Close_Com()  Close_Com(1)

LinPAC Standard API Manual version 1.3.1 Page: 32

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.1. Open_Slot

Description:

This function is used to open and initialize a specific slot on the LinPAC, and will be used by

modules inserted in the LinPAC. For example, to send or receive data from a specific slot, this

function must be called first before any other functions can be used.

Syntax:

[C]

 int Open_Slot(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

 0: The slot was successfully initialized.

 Other: The initialization failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

 int slot=1;

 Open_Slot(slot); // The first slot in the LinPAC will be open and initiated.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 33

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.2. Close_Slot

Description:

After using the of Open_Slot() function to open and initialize a specific slot on the LinPAC, the

Close_Slot() function must also be used to close the slot. This function will be used modules

inserted in the LinPAC. For example, the Close_Slot() function should be called after sending or

receiving data from the specified slot.

Syntax:

[C]

 void Close_Slot(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

 None

Example:

 int slot=1;

 Close_Slot(slot); // The first slot in the LinPAC will be closed.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 34

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.3. Open_SlotAll

Description:

This function is used to open and initialize all slots on the LinPAC. For example, to send or receive

data from multiple slots, this function can be used to simplify the program, and other functions

can be used.

Syntax:

[C]

 int Open_SlotAll(void)

Parameter:

 None

Return Values:

 0: The slot was successfully initialized.

 Other: The initialization failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

 Open_SlotAll();

 // All slots in the LinPAC will be open and initiated.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 35

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.4. Close_SlotAll

Description:

If you the Open_SlotAll() function was used to open and initialize all the slots on the LinPAC, the

Close_SlotAll() function can be used to quickly close them simultaneously. For example, the

Close_SlotAll() function can be called after sending or receiving data from multiple slots to close

all the slots at the same time.

Syntax:

[C]

 void Close_SlotAll(void)

Parameter:

 None

Return Values:

 None

Example:

 Close_Slot();

 // All slots in the LinPAC will be closed.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 36

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.5. ChangeToSlot

Description:

This function is used to assign serial control to the specified slots for to allow control of the

I-87K/I-97 series. The serial bus on the backplane of the LX-series PAC is used for mapping through

to ttySA0 port, and others are COM1 port. For example, to send or receive data from a specified

slot, this function should be called first, and then other series functions can be used.

Syntax:

[C]

 void ChangeToSlot(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

 None

Example:

 int slot=2;

 Open_Slot(0);

 Open_COM(COM1);

 ChangeToSlot(slot);

 Close_Com(COM1);

 Close_Slot(0);

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 37

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.6. GetModuleType

Description:

This function is used to retrieve which type of I/O module is inserted in a specific I/O slot in the

LinPAC. This function performs a supporting task in the collection of information related to the

system’s hardware configurations.

Syntax:

[C]

 int GetModuleType(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

 Module Type: It is defined in the IdTable[] of slot.c.

 (Refer to Figure 2.6-1.)

Example:

 int slot=1;

 int moduleType;

 Open_Slot(slot);

 printf("GetModuleType= 0x%X \n", GetModuleType(slot));

 Close_Slot(slot);

 // The I-8057W card is inserted in slot 1 of LP-8x4x and has a

 // return Value: 0xC2.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and

 LP-52xx.

Type Value

_PARALLEL 0x80

_AI 0xA0

_AO 0xA1

_DI8 0xB0

_DI16 0xB1

_DI32 0xB2

_DO6 0xC0

_DO8 0xC1

_DO16 0xC2

_DO32 0xC3

_DI4DO4 0xD0

_DI8DO8 0xD1

_DI16DO16 0xD2

_MOTION 0xE2

_CAN 0XF0

Figure 2.6-1

LinPAC Standard API Manual version 1.3.1 Page: 38

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.7. sio_open

Description:

This function is used to open and initiate a specified serial port in the LinPAC. The n-port modules

in the LinPAC will use this function. For example, if you want to send or receive data from a

specified serial port, this function must be called first. Then the other functions can be used later.

Syntax:

[C]

 int sio_open(const char *port, speed_t baudrate, tcflag_t data, tcflag_t parity,

 tcflag_t stop)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] Device name: /dev/ttyS2, /dev/ttyS3…/dev/ttyS34

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 baudrate: [Input] B1200/B2400/B4800/B9600/B19200/B38400/B57600/B115200

 date: [Input] DATA_BITS_5/DATA_BITS_6/DATA_BITS_7/DATA_BITS_8

 parity: [Input] NO_PARITY/ODD_PARITY/EVEN_PARITY

 stop: [Input] ONE_STOP_BIT/TWO_STOP_BITS

Return Values:

 This function returns int port descriptor for the port opened successfully.

 ERR_PORT_OPEN is for Failure.

LinPAC Standard API Manual version 1.3.1 Page: 39

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Example:

 #define COM_M1 "/dev/ttyS2" // Defined the first port of I-8144W in slot 1.

 char fd[5];

 fd[0]=sio_open(COM_M1, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);

 if (fd[0]==ERR_PORT_OPEN) {

 printf("open port_m failed!\n");

 return (-1);

 }

 // The I-8114W is inserted in slot 1 and the first port will be open and initiated.

Remark:

(1) The function can be applied for all LinPAC series.

(2) This function can be applied to modules: I-8114W, I-8112iW, I-8142iW, I-8144iW, I-9114i

and I-9144i.

(3) More detailed information about device node, user can refer to:

LinPAC_SDK\include\sio.h

LinPAC Standard API Manual version 1.3.1 Page: 40

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.8. sio_close

Description:

If you have used the function of sio_open() to open the specified serial port in the LinPAC, you

need to use the sio_close() function to close the specified serial port in the LinPAC. For example,

once you have finished sending or receiving data from a specified serial port, this function would

then need to be called.

Syntax:

[C]

 int sio_close(int port)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] Device name: /dev/ttyS2, /dev/ttyS3…/dev/ttyS34

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

Return Values:

 None

Example:

 #define COM_M2 "/dev/ttyS3" // Defined the second port of I-8144iW in slot 1.

 char fd[5];

 fd[0]=sio_open(COM_M2, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);

 sio_close (fd[0]);

 // The second port of i8144iW in slot 1 will be closed.

LinPAC Standard API Manual version 1.3.1 Page: 41

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Remark:

(1) The function can be applied for all LinPAC series.

(2) This function can be applied on COM port modules.

(3) More detailed information about device node, user can refer to:

LinPAC_SDK\include\sio.h

LinPAC Standard API Manual version 1.3.1 Page: 42

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.9. sio_set_noncan

Description:

If you have used the function of sio_open() to open the specified serial port in the LinPAC, you

need to use the sio_close() function to close the specified serial port in the LinPAC. For example,

once you have finished sending or receiving data from a specified serial port, this function would

then need to be called set a opened serial port to non-canonical mode.

Syntax:

[C]

 int sio_set_noncan (int port)

Parameter:

 port: [Input] Device name: /dev/ttyS0, /dev/ttyS1…/dev/ttyS34

Return Values:

 None

Example:

 #define COM_M2 "/dev/ttyS1" // Defined the second port for COM3 (RS-232).

 char fd[5];

 fd[0]=sio_open(COM_M2, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);

 sio_set_noncan(fd[0]);

 sio_close(fd[0]); // The second port will be closed.

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 43

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.10. Read_SN

Description:

This function is used to retrieves the hardware serial identification number on the LinPAC main

controller. This function supports the control of hardware versions by reading the serial ID chip.

Syntax:

[C]

 void Read_SN(unsigned char serial_num[])

Parameter:

 serial_num: [Output] Receive the serial ID number

Return Values:

 None

Example:

 int slot ;

 unsigned char serial_num[8];

 Open_Slot(0);

Read_SN(serial_num);

printf("SN=%x%x%x%x%x%x%x%x\n",serial_num[0],serial_num[1], serial_ num[2]

,serial_num[3],serial_num[4],serial_num[5],serial_num[6],serial_num[7]);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 44

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.11. Open_Com

Description:

This function is used to open and configure the COM port, and must be called at least once before

sending/receiving a command via the COM port. For example, to send or receive data from a

specified COM port, this function should be called first, and then other series functions can be

used.

Syntax:

[C]

 WORD Open_Com(char port, DWORD baudrate, char cData, char cParity, char cStop)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM1, COM2, COM3..., COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 baudrate: [Input] 1200/2400/4800/9600/19200/38400/57600/115200

 cDate: [Input] Data5Bit, Data6Bit, Dat7Bit, Data8Bit

 cParity: [Input] NonParity, OddParity, EvenParity

 cStop: [Input] OneStopBit, TwoStopBit

Return Values:

 0: The slot was successfully initialized.

 Other: The initialization failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 45

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Example:

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

Remark:

(1) The function can be applied for all LinPAC series.

(2) The user can refer to the following information that about COM port for LP-2x4x/52xx.

[LP-2x4x/52xx]

Device
name

Definition in
LP-2x4x/52xx SDK

Description
Default

Baud rate

- /dev/ttyO1 or COM1 Internal communication with the XV-board modules 115200

- Console port RS-232 (RxD, TxD and GND); Non-isolated 115200

ttyO4 /dev/ttyO4 or COM4 RS-232 (RxD, TxD and GND);Non-isolated 9600

ttyO2 /dev/ttyO2 or COM2 RS-485 (Data+, Data-); Non-isolated 9600

ttyO5 /dev/ttyO5 or COM5 RS-485 (Data+, Data-); 2500 VDC isolated 9600

LinPAC Standard API Manual version 1.3.1 Page: 46

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.12. Close_Com

Description:

This function is used to closes and releases the COM port which has been opened. And it must be

called before exiting the application program. The Open_Com will return error message if the

program exit without calling Close_Com function.

Syntax:

[C]

 bool Close_Com(char port)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM1,COM2, COM3...COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

Return Values:

 None

Example:

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 47

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.13. Send_Receive_Cmd

Description:

This function is used to sends a command string to RS-485 network and receives the response

from RS-485 network. If the wChkSum=1, this function automatically adds the two checksum

bytes into the command string and also check the checksum status when receiving response from

the modules. Note that the end of sending string is added [0x0D] to mean the termination of

every command.

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux

Send_Receive_Cmd()
wTimeOut 0.1 s

wT 1 us

Syntax:

[C]

 WORD Send_Receive_Cmd (char port, char szCmd[], char szResult[], WORD wTimeOut,

WORD wChksum, WORD *wT)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 szCmd: [Input] Sending command string

 szResult: [Input] Receiving the response string from the modules

 wTimeOut: [Input] Communicating timeout setting, the unit=0.1 s

 wChkSum: [Input] 0=Disable, 1=Enable

 *wT: [Output] Total time expended in microsecond, the unit=1 us

LinPAC Standard API Manual version 1.3.1 Page: 48

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Values:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

 char m_port =1, m_szSend[40], m_szReceive[40];

 DWORD m_baudrate=115200;

 WORD m_timeout=30; // the unit=0.1 s

 WORD m_chksum=0;

 WORD m_wT; // the unit=1 us

 int RetVal;

 m_szSend[0]='$';

 m_szSend[1]='0';

 m_szSend[2]='0';

 m_szSend[3]='M';

 m_szSend[4]=0;

 /*open device file*/

 Open_Slot(1);

 RetValue=Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

 if (RetValue>0) {

 printf("Open COM%d failed!\n", m_port);

 return FAILURE;

 }

 RetValue=Send_Receive_Cmd(m_port, m_szSend, m_szReceive, m_timeout, m_chksum,

 &m_wT);

 if (RetValue) {

 printf("Module at COM%d Address %d error !!!\n", m_port, m_szSend[2]);

 return FAILURE; }

 Close_Com(m_port);

LinPAC Standard API Manual version 1.3.1 Page: 49

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Remark:

(1) The function can be applied for all LinPAC series.

(2) For example, user can refer to LP-52xx SDK, locate the ‘getsendreceive.c’ file in the

C:\cygwin\LP-52xx_SDK\examples\common\ folder.

(3) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in

LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,

they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 50

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.14. Send_Cmd

Description:

This function only sends a command string to DCON series modules. If the wChkSum=1, it

automatically adds the two checksum bytes to the command string. And then the end of sending

string is further added [0x0D] to mean the termination of the command (szCmd). And this

command string cannot include space char within the command string. For example: ‘$01M 02 03’

is user’s command string. However, the actual command send out is ‘$01M’.

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux

Send_Cmd() wTimeOut 0.1 s

Syntax:

[C]

 WORD Send_Cmd (char port, char szCmd[], WORD wTimeOut, WORD wChksum)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 szCmd: [Input] Sending command string

 wTimeOut: [Input] Communicating timeout setting, the unit=0.1 s

 wChkSum: [Input] 0=Disable, 1=Enable

Return Values:

 None

LinPAC Standard API Manual version 1.3.1 Page: 51

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Example:

 char m_port=1, m_szSend[40];

 DWORD m_baudrate=115200;

 WORD m_timeout=50; // the unit=0.1 s

 WORD m_chksum=0;

 m_szSend[0]='$';

 m_szSend[1]='0';

 m_szSend[2]='0';

 m_szSend[3]='M';

 Open_Slot(2); // The module is inserted in slot 2 and address is 0.

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

 Send _Cmd(m_port, m_szSend, m_timeout, m_chksum);

 Close_Com(m_port);

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in

LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,

they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 52

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.15. Receive_Cmd

Description:

This function is used to obtain the responses string from the modules in RS-485 network. And this

function provides a response string without the last byte [0x0D].

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux

Receive_Cmd() wTimeOut 0.1 s

Syntax:

[C]

 WORD Receive_Cmd (char port, char szResult[], WORD wTimeOut, WORD wChksum)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 szResult: [Output] Sending command string

 wTimeOut: [Input] Communicating timeout setting, the unit = 0.1 s

 wChkSum: [Input] 0=Disable, 1=Enable

Return Values:

 None

LinPAC Standard API Manual version 1.3.1 Page: 53

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Example:

 char m_port=3;

 char m_Send[40], m_szResult[40] ;

 DWORD m_baudrate=115200;

 WORD m_timeout=50; // the unit = 0.1 s

 WORD m_chksum=0;

 m_szSend[0]='$';

 m_szSend[1]='0';

 m_szSend[2]='1';

 m_szSend[3]='M';

 m_szSend[4]=0;

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

 Send _Cmd(m_port, m_szSend, m_timeout, m_chksum);

 Receive_Cmd(m_port, m_szResult, m_timeout, m_chksum);

 Close_Com(m_port);

 // Read the remote module: I-7016D, m_ szResult: ‘!017016D’.

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in

LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,

they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 54

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.16. Send_Binary

Description:

Send out the command string by fix length, which is controlled by the parameter ‘iLen’. The

difference between this function and Send_cmd is that Send_Binary terminates the sending

process by the string length ‘iLen’ instead of the character ‘CR’ (Carry return). Therefore, this

function can send out command string with or without null character under the consideration of

the command length. Besides, because of this function without any error checking mechanism

(Checksum, CRC, LRC... etc.), users have to add the error checking information to the raw data by

themselves if communication checking system is required. Note that this function is usually

applied to communicate with the other device, but not for ICP DAS DCON (I-7000/8000/87K)

series modules.

Syntax:

[C]

 WORD Send_Binary (char port, char szCmd[], int iLen)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 szCmd: [Input] Sending command string

 iLen: [Input] The length of command string

Return Values:

 None

LinPAC Standard API Manual version 1.3.1 Page: 55

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Example:

 int m_length=4;

 char m_port=3, char m_szSend[40];

 DWORD m_baudrate=115200;

 m_szSend[0]='0';

 m_szSend[1]='1';

 m_szSend[2]='2';

 m_szSend[3]='3';

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

 Send _Binary(m_port, m_szSend, m_length);

 Close_Com(m_port);

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in

LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,

they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 56

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.17. Receive_Binary

Description:

This function is applied to receive the fix length response. The length of the receiving response is

controlled by the parameter ‘iLen’. The difference between this function and Receive_cmd is that

Receive_Binary terminates the receiving process by the string length ‘iLen’ instead of the

character ‘CR’ (Carry return). Therefore, this function can be used to receive the response string

data with or without null character under the consideration of receiving length. Besides, because

of this function without any error checking mechanism (checksum, CRC, LRC... etc.), users have to

remove from the error checking information from the raw data by themselves if communication

checking system is used. Note that this function is usually applied to communicate with the other

device, but not for ICP DAS DCON (I-7000/8000/87K) series modules.

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux

Receive_Binary()
wTimeOut 0.1 s

wT 1 us

Syntax:

[C]

 WORD Receive_Binary (char cPort, char szResult[], WORD wTimeOut, WORD wLen,

 WORD *wT)

Parameter:

 port: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 szResult: [Input] Receiving the response string from the modules

LinPAC Standard API Manual version 1.3.1 Page: 57

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 wTimeOut: [Input] Communicating timeout setting, the unit=0.1s

 wLen: [Input] The length of command string

 *wT: [Output] Total time expended in microsecond, unit=1 us

Return Values:

 None

Example:

 int m_length=10;

 char m_port=3, m_szSend[40], m_szReceive[40];

 DWORD m_baudrate=115200;

 WORD m_wt, m_timeout=10, m_wlength=10; // the unit is 0.1 s for m_timeout

 m_szSend[0]='0';

 m_szSend[1]='1';

 m_szSend[2]='2';

 m_szSend[3]='3';

 m_szSend[4]='4';

 m_szSend[5]='5';

 m_szSend[6]='6';

 m_szSend[7]='7';

 m_szSend[8]='8';

 m_szSend[9]='9';

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit); // Send 10 character

 Send _Binary(m_port, m_szSend, m_length); // Receive 10 character.

 Receive_Binary(m_port, m_szResult, m_timeout, m_wlength, &m_wt);

 Close_Com(m_port);

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in

LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,

they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 58

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.18. GetBackPlaneID

Description:

This function is used to retrieve the back plane ID number in the LinPAC.

Syntax:

[C]

 int GetBackPlaneID()

Parameter:

 None

Return Values:

 Backplane ID number.

Example:

 int id;

 id=GetBackPlaneID();

 printf("GetBackPlanel =%d \n", id);

 // Get the LinPAC backplane id.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 59

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.19. GetSDKversion

Description:

This function is used to retrieve the version of LinPAC SDK.

Syntax:

[C]

 float GetSDKversion(void)

Parameter:

 None

Return Values:

 Version number.

Example:

 printf(" GetSDKversion=%4.2f \n ", GetSDKversion());

 // Get the LinPAC SDK version number.

 // Returned Value: GetSDKversion=1.

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 60

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.20. GetSlotCount

Description:

This function is used to retrieve the number of slot in the LinPAC.

Syntax:

[C]

 int GetSlotCount();

Parameter:

 None

Return Values:

 [LP-8x2x/8x4x/9x2x] Number of slot.

 [LX-Series] Number of slot, and add 1.

Example:

 int number;

 number=GetSlotCount();

 printf("GetSlotCount=%d \n", number);

 // Get the LinPAC-8841/9821 slot count.

 // Returned Value: GetSlotCount=8.

Remark:

(1) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

(2) Refer to LinPAC_X86_SDK/examples/lx_8k_9k/common/getlist.c for details of LX-Series

PAC.

 Module

 Value
LP-8841 LX-9781

API Return value 8 8

Slot number 8 7

LinPAC Standard API Manual version 1.3.1 Page: 61

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.21. GetNameOfModule

Description:

This function is used to retrieve the name of an 8000 series I/O module, which is plugged into a

specific I/O slot in the LP-8000. This function supports the collection of system hardware

configurations.

Syntax:

[C]

 int GetNameOfModule(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

 I/O module ID. For Example, the I-8017W will return 8017.

Example:

 int slot=1;

 int moduleID;

 Open_Slot(slot);

 moduleID=GetNameOfModule(slot);

 Close_Slot(slot);

 // The I-8017W module is inserted in slot 1 of LP-8x4x.

 // Returned Value: moduleName=’8017 ‘.

Remark:

(1) The function can't be applied on PAC: LP-2x4x, LP-52xx and LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 62

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.22. GetNameOfModule_9K

Description:

This function is used to retrieve the name of an 9000 series I/O module, which is plugged into a

specific I/O slot in the LP-9x21. This function supports the collection of system hardware

configurations.

Syntax:

[C]

 int GetNameOfModule_9K(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

 I/O module ID. For Example, the I-9017 will return 9017.

Example:

 int slot=1;

 int moduleID;

 Open_Slot(slot);

 moduleID=GetNameOfModule_9K(slot);

 Close_Slot(slot);

 // The I-9017 module is inserted in slot 1 of LP-9x21.

 // Returned Value: moduleName=’9017 ‘.

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 63

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.23. GetNameOfModule_xw

Description:

This function is used to retrieve the name of an XW-Board series I/O module, which is plugged

into a slot in the LP-5000. This function supports the collection of system hardware configurations.

Syntax:

[C]

 int GetNameOfModule_xw()

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 I/O module ID. For Example, the XW107 module will return XW107.

Example:

 int slot;

 int moduleID;

 Open_Slot(1);

 moduleID=GetNameOfModule_xw();

 Close_Slot(1);

 // The XW107 card plugged in slot 1 of LP-51xx.

 // Returned Value: moduleName=’XW107’.

Remark:

(1) One LP-5000 can only plug only one XW-board.

(2) The function only for applied on PAC: LP-51xx.

LinPAC Standard API Manual version 1.3.1 Page: 64

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.24. GetDIPswitch

Description:

This function is used to retrieve the DIP switch value in the LinPAC.

Syntax:

[C]

 int GetDIPswitch()

Parameter:

 None

Return Values:

 DIP switch value.

Example:

 int value;

 value=GetDIPswitch();

 printf("GetDIPswitch=%d \n", value);

 // Get the LinPAC DIP switch value.

 // Returned Value: GetDIPswitch=128.

Remark:

(1) The functioncan be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 65

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.25. SetLED

Description:

This function is used to turn the LinPAC LED’s on/off. Support for LP-51xx, LP-8x4x and LX-Series.

[LP-51xx Series]

Syntax:

[C]

 void SetLED(unsigned int addr,unsigned int value)

Parameter:

 addr: [Input] Range of programmable LED display is 1 to 5

 value: [Input] 1: Turn on the LED

 0: Turn off the LED

Return Values:

 None

Example:

 unsigned int addr,value;

 addr=4;

 value=1;

 SetLED(addr, value);

 // Turn on the LED4.

Remark:

Address L4 L3 L2
RUN

(L5)
PWR L1

Color Green Yellow Green Red Green Red

Programmable Yes Yes Yes Yes No Yes

Function None None None Start Power None

LinPAC Standard API Manual version 1.3.1 Page: 66

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

[LP-8x4x Series]

Syntax:

[C]

 void SetLED(unsigned int led)

Parameter:

 led: [Input] 1: Turn on the LED

 0: Turn off the LED

Return Values:

 None

Example:

 unsigned int led;

 led=1;

 SetLED(led);

 // The LED will turn on in LP-8x4x.

Remark:

Address RUN PWR

Color Red Green

Programmable Yes No

Function Start Power

LinPAC Standard API Manual version 1.3.1 Page: 67

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

[LX-Series]

Syntax:

[C]

 void SetLED(unsigned int bFlag)

Parameter:

 bFlag : [Input] Select one number to control LED status

 There are eight options in below:

 1. Led ‘RUN’ ON 2. Led ‘L1’ ON

 3. Led ‘RUN’ and ‘L1’ ON 4. Led ‘L2’ ON

 5. Led ‘RUN’ and ‘L2’ ON 6. Led ‘L1’ and ‘L2’ ON

 7. All led ON 8. All led OFF

Return Values:

 None

Example:

 unsigned int option;

 scanf("%d",&option);

 SetLED(option);

Remark:

(1) Refer to LinPAC_X86_SDK/examples/lx_8k_9k/common/led.c for more details.

 Options

 Address
1 2 3 4 5 6 7 8

RUN ON OFF ON OFF ON OFF ON OFF

L1 OFF ON ON OFF OFF ON ON OFF

L2 OFF OFF OFF ON ON ON ON OFF

LinPAC Standard API Manual version 1.3.1 Page: 68

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.26. SetLED_Single

Description:

This function is used to turn on/off a single LED. Support for LX-Series.

Syntax:

[C]

 void SetLED_Single(char led, char status)

Parameter:

 led: [Input] 0: RUN

 1: L1

 2: L2

 status: [Input] 0: Turn off the led

 1: Turn on the led

Return Values:

 None

Example:

 led = atoi(argv[1]);

 status = atoi(argv[2]);

 SetLED_Single(led, status);

Remark:

(1) The function only for applied on PAC: LX-Series.

(2) Refer to LinPAC_X86_SDK/examples/lx_8k_9k/common/led_single.c for more details.

LinPAC Standard API Manual version 1.3.1 Page: 69

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.27. GetRotaryID

Description:

This function is used to retrieve the rotary ID number in the LP-51xx, LP-8x4x and LX-Series.

Syntax:

[C]

 int GetRotaryID(int type,& id) // LP-8x4x and LP-51xx

 int GetRotaryID(int slot) // LX-Series

Parameter:

 type: [Input] Type definition: LP-8x4x is type 1

 id: [Output] Rotary switch ID number

 slot: [Input] Slot definition: LX-Series is slot 9

Return Values:

 0: The slot was successfully initialized.

 Other: The initialization failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

 int id, slot, type, wRetVal;

 type=1; // For LP-8x4x.

 wRetVal=Open_Slot(slot);

 if (wRetVal>0) {

 printf("open Slot%d failed!\n",slot);

 return (-1);}

 GetRotaryID(type, &id);

 printf("GetRotaryID=%d \n",id);

 // Get the LP-8x4x rotary id. If user turn the rotary switch to the 1 position,

 // would get the returned value: GetRotaryID=78.

LinPAC Standard API Manual version 1.3.1 Page: 70

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Remark:

(1) The function can be applied on PAC: LP-51xx, LP-8x4x and LX-Series.

(2) Refer to LinPAC_X86_SDK/examples/lx_8k_9k/common/rotary_sw.c for details of

LX-Series PAC.

(3) The following is the rotary ID number table of LP-8x4x and LP-51xx:

[LP-8x4x]

SW 0 1 2 3 4 5 6 7 8 9

ID 79 78 77 76 75 74 73 72 71 70

 [LP-51xx]

SW 0 1 2 3 4 5 6 7 8 9

ID 47 46 45 44 43 42 41 40 39 38

LinPAC Standard API Manual version 1.3.1 Page: 71

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.28. rotary_switch_read

Description:

This function is used to retrieve the rotary ID number in the LP-2x4x, LP-52xx, LP-8x2x and

LP-9x2x.

Syntax:

[C]

 int rotary_switch_read (&value)

Parameter:

 value: [Output] Rotary switch ID number

Return Values:

 0: The slot was successfully initialized.

 Other: The initialization failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

 int result=0 ;

 unsigned char value=0;

 rotary_switch_read(&value);

 if(result) {

 printf("rsw(%d) : rotary switch read error\n",result);

 return FAILURE;

 }

 else {

 printf("%d\n", value); // Get the LP-9x21 rotary id.

 }

 // If user turn the rotary switch to the 1 position, would get the returned value: 1.

LinPAC Standard API Manual version 1.3.1 Page: 72

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Remark:

(1) The function can't be applied on PAC: LP-51xx, LP-8x4x and LX-Series.

(2) The following is the rotary ID number table of LP-2x4x, LP-52xx, LP-8x2x and LP-9x2x:

Rsw 0 1 2 3 4 5 6 7 8 9

ID 0 1 2 3 4 5 6 7 8 9

LinPAC Standard API Manual version 1.3.1 Page: 73

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.29. Read_SRAM

Description:

This function is used to read mram data in LX-Series PAC.

Syntax:

[C]

 unsigned char Read_SRAM(int offset);

Parameter:

 offset: [input] Get mram offset address value

Return Values:

 Mram value of offset address.

Example:

 int offset=0; // Read mram address 0 value.

 Open_Slot(0);

 Read_SRAM(offset);

 Close_Slot(0);

Remark:

(1) The function only for applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 74

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.30. Write_SRAM

Description:

This function is used to write mram data to LX-Series PAC.

Syntax:

[C]

 void Write_SRAM(int offset, unsigned char data);

Parameter:

 offset: [input] Mram offset address to write

 data: [input] Data you want to write to mram

Return Values:

 None

Example:

 int offset=0; // Read mram address 0 value.

 int data=1;

 Open_Slot(0);

 Write_SRAM(offset, data&0xff);

 Close_Slot(0);

Remark:

(1) The function only for applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 75

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.31. EnableWDT

Description:

This function can be used to enable the watchdog timer (WDT) and users need to reset WDT in

the assigned time set by users. Or LinPAC will reset automatically.

Syntax:

[C]

 void EnableWDT(unsigned int mseconds)

Parameter:

 mseconds: [Input] LinPAC will reset in the assigned time if users don’t reset WDT

 The unit is mini-second

Return Values:

 None

Example:

 EnableWDT(10000); //Enable WDT interval 10000ms=10s

 while (getchar()==10)

 {

 printf("Refresh WDT\n");

 EnableWDT(10000); //Refresh WDT 10s

 }

 printf("Disable WDT\n");

 DisableWDT();

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 76

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.32. DisableWDT

Description:

This function is used to disable WDT.

Syntax:

[C]

 void DisableWDT(void)

Parameter:

 None

Return Values:

 None

Example:

 EnableWDT(10000);

 while (getchar()==10)

 {

 printf("Refresh WDT\n");

 EnableWDT(10000);

 }

 printf("Disable WDT\n");

 DisableWDT(); // Disable WDT

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 77

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.33. WatchDogSWEven

Description:

This function is used to read the LinPAC Reset Condition and users can reinstall the initial value

according to the Reset Condition.

Syntax:

[C]

 unsigned int WatchDogSWEven (void)

Parameter:

 None

Return Values:

Just see the last number of the return value – RCSR (Reset Controller Status Register). For

example : RCSR is “20009a4”, so just see the last number “4”. 4 is 0100 in bits and it means:

Bit 0 : Hardware Reset (Like : Power Off, Reset Button)

Bit 1 : Software Reset (Like : Type “Reboot” in command prompt)

Bit 2 : WDT Reset (Like : Use “EnableWDT(1000)”)

 Bit 3 : Sleep Mode Reset (Not supported in the LinPAC)

Example:

 printf("RCRS = %x\n", WatchDogSWEven());

Remark:

(1) The function can be applied for LinPAC PXA270 series.

LinPAC Standard API Manual version 1.3.1 Page: 78

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.34. ClearWDTSWEven

Description:

This function is used to clear RCSR value.

Syntax:

[C]

 void ClearWDTSWEven (unsigned int rcsr)

Parameter:

 rcsr : Clear bits of RCSR. Refer to the following parameter setting:

 1 : clear bit 0

 2 : clear bit 1

 4 : clear bit 2

 8 : clear bit 3

 F : clear bit 0 to bit 3

Return Values:

 None

Example:

 ClearWDTSWEven(0xF); //Used to clear bit 0 to bit 3 of RCRS to be zero.

Remark:

(1) The function can be applied for LinPAC PXA270 series.

LinPAC Standard API Manual version 1.3.1 Page: 79

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

2.35. RefreshWDT

Description:

This function is used to refresh WDT for Linux AM335x PAC, refer to user manual for detailed.

Syntax:

[C]

 void RefreshWDT ()

Parameter:

 None

Return Values:

 None

Example:

int main(int argc, char **argv)

{

 int wdt_en = 0, wdt_refresh = 0, c, time_sec = 10; // default 10 secs
 Open_Slot(SLOT0); // open device file
 while((c=getopt(argc, argv, "dehrs:")) != -1) {
 switch(c) {
 case 'd':
 wdt_en = 0;
 break;
 case 'e':
 wdt_en = 1;
 break;
 case 'r':
 RefreshWDT(); //refresh watchdog timer
 Close_Slot(SLOT0);
 return SUCCESS;
 }
 }
}

Remark:

The function can be applied for Linux AM335x PAC series, please download Linux AM335x SDK.

LinPAC Standard API Manual version 1.3.1 Page: 80

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3. Digital Input/Output Functions

Supported LinPACs

The table below lists the common functions of digital input/output modules that are supported by

each LinPAC. For more details, please refer to the corresponding chapters.

 I-8000/9000 modules via parallel port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

DO_8 ✔ ✔ ✔ ✔

DO_16 ✔ ✔ ✔ ✔

DO_32 ✔ ✔ ✔ ✔

ReadDI ✔ ✔ ✔ ✔

DI_8 ✔ ✔ ✔ ✔

DI_16 ✔ ✔ ✔ ✔

DI_32 ✔ ✔ ✔ ✔

DIO_DO_8 ✔ ✔ ✔ ✔

DIO_DO_16 ✔ ✔ ✔ ✔

DIO_DI_8 ✔ ✔ ✔ ✔

DIO_DI_16 ✔ ✔ ✔ ✔

DO_8_RB
DO_16_RB
DO_32_RB
DIO_DO_8_RB,
DIO_DO_16_RB

 ✔ ✔ ✔ ✔

DO_8_BW
DO_16_ BW
DO_32_ BW
DIO_DO_8_ BW
DIO_DO_16_ BW

 ✔ ✔ ✔ ✔

LinPAC Standard API Manual version 1.3.1 Page: 81

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

DI_8_BW、DI_16_ BW

、DI_32_ BW
 ✔ ✔ ✔ ✔

UDIO_WriteConfig_16 ✔ ✔ ✔ ✔

UDIO_ReadConfig_16 ✔ ✔ ✔ ✔

UDIO_DO16 ✔ ✔ ✔ ✔

UDIO_DI16 ✔ ✔ ✔ ✔

Note: LX-Series includes LX-8000 and LX-9000 series.

 I-7000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

DigitalOut ✔ ✔ ✔ ✔ ✔ ✔ ✔

DigitalBitOut ✔ ✔ ✔ ✔ ✔ ✔ ✔

DigitalOutReadBack ✔ ✔ ✔ ✔ ✔ ✔ ✔

DigitalOut_7016 ✔ ✔ ✔ ✔ ✔ ✔ ✔

DigitalIn ✔ ✔ ✔ ✔ ✔ ✔ ✔

DigitalInLatch ✔ ✔ ✔ ✔ ✔ ✔ ✔

ClearDigitalInLatch ✔ ✔ ✔ ✔ ✔ ✔ ✔

DigitalInCounterRead ✔ ✔ ✔ ✔ ✔ ✔ ✔

ClearDigitalInCounter ✔ ✔ ✔ ✔ ✔ ✔ ✔

ReadEventCounter ✔ ✔ ✔ ✔ ✔ ✔ ✔

ClearEventCounter ✔ ✔ ✔ ✔ ✔ ✔ ✔

Note: LX-Series includes LX-8000 and LX-9000 series.

LinPAC Standard API Manual version 1.3.1 Page: 82

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I-8000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

DigitalOut_8K ✔ ✔ ✔

DigitalBitOut_8K ✔ ✔

DigitalIn_8K ✔ ✔ ✔

DigitalInCounterRead_8K ✔ ✔

ClearDigitalInCounter_8K ✔ ✔

DigitalInLatch_8K ✔ ✔

ClearDigitalInLatch_8K ✔ ✔

 I-9000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

DigitalOut_9K ✔ ✔

DigitalBitOut_9K ✔

DigitalIn_9K ✔ ✔

DigitalInCounterRead_9K ✔

ClearDigitalInCounter_9K ✔

DigitalInLatch_9K ✔

ClearDigitalInLatch_9K ✔

LinPAC Standard API Manual version 1.3.1 Page: 83

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I-87000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

DigitalOut_87K ✔ ✔ ✔

DigitalOutReadBack_87K ✔ ✔

DigitalBitOut_87K ✔ ✔

DigitalIn_87K ✔ ✔ ✔

DigitalInLatch_87K ✔ ✔

ClearDigitalInLatch_87K ✔ ✔

DigitalInCounterRead_87K ✔ ✔

ClearDigitalInCounter_87K ✔ ✔

LinPAC Standard API Manual version 1.3.1 Page: 84

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1. For I-8000/9000 modules via parallel port

3.1.1 DO_8

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]

 void DO_8(int slot, unsigned char data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Output data

Return Value:

 None

Examples:

 int slot=1;

 unsigned char data=3;

 Open_Slot(slot);

 DO_8(slot, data);

 Close_Slot(slot);

 // The I-8064W is inserted in slot 1 of LinPAC and can turn on channel 0 and 1.

Remark:

(1) This function can be applied on modules: I-8060W, I-8064W, I-8065, I-8066, I-8068W,

I-8069W and I-9064.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 85

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.2 DO_16

Description:

This function is used to output 16-bit data to a digital output module. The 0 to 15 bits of output

data are mapped into the 0 to 15 channels of digital output modules respectively.

Syntax:

[C]

 void DO_16(int slot, unsigned int data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Output data

Return Value:

 None

Examples:

 int slot=1;

 unsigned int data=3;

 Open_Slot(slot);

 DO_16(slot, data);

 Close_Slot(slot);

 // The I-8057W is inserted in slot 1 of LinPAC and can turn on channel 0 and 1.

Remark:

(1) This function can be applied on modules: I-8037W, I-8056W, I-8057W, I-8046W and

I-9057P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 86

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.3. DO_32

Description:

Output the 32-bit data to a digital output module. The 0 to 31 bits of output data are mapped into

the 0 to 31 channels of digital output modules respectively.

Syntax:

[C]

 void DO_32(int slot, unsigned int data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Output data

Return Value:

 None

Examples:

 int slot=1;

 unsigned int data=3;

 Open_Slot(slot);

 DO_32(slot, data);

 Close_Slot(slot);

 // The I-8041W is inserted in slot 1 of LinPAC and can turn on channel 0 and 1.

Remark:

(1) This function can be applied on module: I-8041W and I-9041P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 87

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.4 ReadDI

Description:

This function is used to obtain input data from a digital input module, supports 8/16/32-bit digital

input.

Syntax:

[C]

 unsigned long ReadDI(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 Input data.

Examples:

 int slot=1;

 Open_Slot(slot);

 printf("Read DI value: %d\n", ReadDI(slot));

 Close_Slot(slot);

Remark:

(1) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 88

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.5 DI_8

Description:

Obtains 8-bit input data from a digital input module. The 0 to 7 bits of input data correspond to

the 0 to 7 channels of digital input modules respectively.

Syntax:

[C]

 unsigned char DI_8(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 Input data.

Examples:

 int slot=1;

 unsigned char data;

 Open_Slot(slot);

 data=DI_8(slot);

 Close_Slot(slot);

 // The I-8058W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

 // Returned value: Data=0xfC.

Remark:

(1) There are two kind of Input type:

Input Type On State Off State Modules

1

(Dry contact)
LED On, Readback as 1 LED Off, Readback as 0 I-8058W

2

(Wet contact)
LED On, Readback as 0 LED Off, Readback as 1

I-8048W, I-8052W

I-9048

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 89

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.6 DI_16

Description:

This function is used to obtain 16-bit input data from a digital input module. The 0 to 15 bits of

input data correspond to the 0 to 15 channels of digital module’s input respectively.

Syntax:

[C]

 unsigned int DI_16(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 Input data.

Examples:

 int slot=1;

 unsigned int data;

 Open_Slot(slot);

 data=DI_16(slot);

 Close_Slot(slot);

 // The I-8053W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

 // Returned value: Data=0xfffC.

Remark:

(1) There are two kind of Input type:

Input Type On State Off State Modules

1

(Dry contact)
LED On, Readback as 1 LED Off, Readback as 0 I-8046W

2

(Wet contact)
LED On, Readback as 0 LED Off, Readback as 1

I-8051W, I-8053W,
I-8053PW, I-9053P

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 90

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.7 DI_32

Description:

This function is used to obtain 32-bit input data from a digital input module. The 0 to 31 bits of

input data correspond to the 0 to 31 channels of digital input module respectively.

Syntax:

[C]

 unsigned long DI_32(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 Input data.

Examples:

 int slot=1;

 unsigned long data;

 Open_Slot(slot);

 data=DI_32(slot);

 Close_Slot(slot);

 // The I-8040W is inserted in slot 1 of LinPAC and has inputs in channels 0 and 1.

 // Returned value: Data=0xfffffffC.

Remark:

(1) There is one kind of Input type:

Input Type On State Off State Modules

1

(Wet contact)
LED On, Readback as 0 LED Off, Readback as 1 I-8040W, I-9040P

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 91

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.8 DIO_DO_8

Description:

This function is used to output 8-bit data to DIO modules. These modules run 8 digital input

channels and 8 digital output channels simultaneously. The 0 to 7 bits of output data are mapped

onto the 0 to 7 output channels for their specific DIO modules respectively.

Syntax:

[C]

 void DIO_DO_8(int slot, unsigned char data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Output data

Return Value:

 None

Examples:

 int slot=1;

 unsigned char data=3;

 Open_Slot(slot);

 DIO_DO_8(slot, data);

 Close_Slot(slot);

 // The I-8054W is inserted in slot 1 of LinPAC and can turn on channels 0 and 1.

 // It not only outputs a value, but also shows 16LEDs.

Remark:

(1) This function can be applied in modules: I-8054W, I-8055W and I-8063W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 92

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.9 DIO_DO_16

Description:

This function is used to output 16-bits of data to DIO modules, which have 16 digital input and 16

digital output channels running simultaneously. The 0 to 15 bits of output data are mapped onto

the 0 to 15 output channels for their specific DIO modules respectively.

Syntax:

[C]

 void DIO_DO_16(int slot, unsigned int data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Output data

Return Value:

 None

Examples:

 int slot=1;

 unsigned int data=3;

 Open_Slot(slot);

 DIO_DO_16(slot, data);

 Close_Slot(slot);

 // The I-8042W is inserted in slot 1 of LinPAC and can turn on the channels 0 and 1.

 // It not only outputs a value, but also shows 32LEDs.

Remark:

(1) This function can be applied on modules: I-8042W and I-8050W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 93

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.10 DIO_DI_8

Description:

This function is used to obtain 8-bit data from DIO modules. These modules run 8 digital input and

8 digital output channels simultaneously. The 0 to 7 bits of input data, are mapped onto the 0 to 7

input channels for their specific DIO modules respectively.

Syntax:

[C]

 Unsigned char DIO_DI_8(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 Input data.

Examples:

 int slot=1;

 unsigned char data;

 Open_Slot(slot);

 data=DIO_DI_8(slot);

 Close_Slot(slot);

 // The I-8054W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

 // Returned value: Data=0xfC.

Remark:

(1) This function can be applied in modules: I-8054W, I-8055W and I-8063W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 94

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.11 DIO_DI_16

Description:

This function is used to obtain 16-bit data from DIO modules. These modules run 16 digital input

and 16 digital output channels simultaneously. The 0 to 15 bits of input data are mapped onto the

0 to 15 input channels for their specific DIO modules respectively.

Syntax:

[C]

 Unsigned char DIO_DI_16(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 Input data.

Examples:

 int slot=1;

 unsigned char data;

 Open_Slot(slot);

 data=DIO_DI_16(slot);

 Close_Slot(slot);

 // The I-8042W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

 // Returned value: Data=0xfffC.

Remark:

(1) This function can be applied in modules: I-8042W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 95

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.12 DO_8_RB, DO_16_RB, DO_32_RB, DIO_DO_8_RB, DIO_DO_16_RB

Description:

This function is used to Readback all channel status from a Digital Output module.

Syntax:

[C]

 unsigned char DO_8_RB(int slot)

unsigned int DO_16_RB(int slot)

unsigned long DO_32_RB(int slot)

unsigned char DIO_DO_8_RB(int slot)

 unsigned int DIO_DO_16_RB(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 All DO channel status.

Examples:

 int slot=1;

 Open_Slot(slot);

 printf(“%u”,DO_32_RB(slot));

 Close_Slot(slot);

 // The I-8041W module is inserted in slot 1 of LinPAC and return all DO channel status.

Remark:

(1) These functions can be applied on modules:

DO 8 channel: I-8060W, I-8064W, I-8065W, I-8066, I-8068W and I-8069W.

DO 16 channel: I-8037W, I-8056W, I-8057W and I-8046W.

DO 32 channel: I-8041W and I-9041P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 96

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.13 DO_8_BW, DO_16_ BW, DO_32_ BW, DIO_DO_8_ BW,

DIO_DO_16_ BW

Description:

This function is used to output assigned single channel status (ON/OFF) of a Digital Output

module.

Syntax:

[C]

 void DO_8_BW(int slot, int bit, int data)

 void DO_16_BW (int slot, int bit, int data)

 void DO_32_BW (int slot, int bit, int data)

 void DIO_DO_8_BW (int slot, int bit, int data)

 void DIO_DO_16_BW (int slot, int bit, int data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 bit: [Input] Channel of module

 data: [Input] Channel status [on: 1 / off : 0]

Return Value:

 None

Examples:

 int slot=1, bit=0, data=1;

 Open_Slot(slot);

 DO_32_BW(slot, bit, data);

 Close_Slot(slot);

 // The I-8041W module is inserted in slot 1 of LinPAC and just turn on channel 0 of I-8041W.

LinPAC Standard API Manual version 1.3.1 Page: 97

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Remark:

(1) These functions can be applied on modules:

DO 8 channel: I-8060W, I-8064W, I-8065, I-8066, I-8068W and I-8069W.

DO 16 channel: I-8037W, I-8056W and I-8057W.

DO 32 channel: I-8041W and I-9041P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 98

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.14 DI_8_BW、DI_16_ BW、DI_32_ BW

Description:

This function is used to Readback assigned single channel status (ON/OFF) from a Digital Input

module.

Syntax:

[C]

 int DI_8_BW(int slot,int bit)

int DI_16_BW (int slot,int bit)

 int DI_32_BW (int slot,int bit)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 bit: [Input] Channel of module

Return Value:

 None

Examples:

 int slot=1, bit=0;

 Open_Slot(slot);

 printf(“DI channel %d = %d\n”, bit, DI_32_BW(slot, bit)); // (0: ON, 1: OFF).

 Close_Slot(slot);

 // The I-8040W module is inserted in slot 1 of LinPAC and return channel 0 status.

Remark:

(1) These functions can be applied on modules:

DI 8 channel: I-8048W, I-8052W and I-8058W.

DI 16 channel: I-8051W and I-8053W.

DI 32 channel: I-8040W and I-9040P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 99

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.15 UDIO_WriteConfig_16

Description:

This function is used to configure the channel of the universal DIO module which is digital input or

digital output mode. The universal DIO module can be up to 16 digital input or digital output

channels running simultaneously.

Syntax:

[C]

 unsigned short UDIO_WriteConfig_16(int slot, unsigned short config)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Channel status [DO: 1/DI: 0]

Return Value:

 None

Examples:

 int slot=1;

 unsigned short config=0xffff;

 Open_Slot(slot);

 UDIO_WriteConfig_16(slot, config);

 Close_Slot(slot);

 // WriteConfig: 0xffff (ch 0 to ch15 is DO mode).

Remark:

(1) This function can be applied on modules: I-8050W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 100

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.16 UDIO_ReadConfig_16

Description:

This function is used to read the channels configuration of the universal DIO module which is

digital input or digital output mode.

Syntax:

[C]

 unsigned short UDIO_ReadConfig_16(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 None

Examples:

 int slot=1;

 unsigned int ret;

 unsigned short config=0x0000;

 Open_Slot(slot);

 UDIO_WriteConfig_16(slot, config);

 ret=UDIO_ReadConfig_16(slot);

 printf(“Read the I/O Type is: 0x%04lx \n\r”,ret);

 Close_Slot(slot);

 // The I-8050W is inserted in slot 1 of LinPAC.

 // WriteConfig: 0x0000 (ch 0 to ch15 is DI mode)

 // Read the I/O Type is: 0x0000

Remark:

(1) This function can be applied on modules: I-8050W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 101

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.17 UDIO_DO16

Description:

This function is used to output 0 to 15 bits data to a universal DIO module according to the

channel configuration. The 0 to 15 bits of output data are mapped onto the 0 to 15 output

channels for their specific universal DIO modules respectively.

Syntax:

[C]

 void UDIO_DO16(int slot, unsigned short config)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 data: [Input] Output data

Return Value:

 None

Examples:

 int slot=1; // The I-8050W is inserted in slot 1 of LinPAC.

 unsigned int data;

 unsigned short config =0x00ff;

 Open_Slot(slot);

 UDIO_WriteConfig_16(slot, config);

 scanf(“%d:”,&data);

 UDIO_DO16(slot, data);

 printf(“DO(Ch0 to Ch7) of I-8050 in Slot %d=0x%x\n\r”,slot, data);

 Close_Slot(slot);

 // WriteConfig: 0x00ff (ch0 to ch7 is DO mode and ch8 to ch15 is DI mode).

 // Input DO value: 255. DO(Ch0 to Ch7) of I-8050 in Slot 1=0xff.

Remark:

(1) This function can be applied on modules: I-8050W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 102

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.18 UDIO_DI16

Description:

This function is used to input 0 to 15 bits data to a universal DIO module according to the channel

configuration. The 0 to 15 bits of input data are mapped onto the 0 to 15 input channels for their

specific universal DIO modules respectively.

Syntax:

[C]

 unsigned short UDIO_DI16(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 None

Examples:

 int slot=1; // The I-8050W is inserted in slot 1 of LinPAC.

 unsigned int data;

 unsigned short config =0xff00;

 Open_Slot(slot);

 UDIO_WriteConfig_16(slot, config);

 data=UDIO_DI16(slot); // DI(Ch0 to Ch7) of I-8055 in Slot 1=0xfbff.

 printf(“DI(Ch0 to Ch7) of I-8055 in Slot %d=0x%x\n\r”,slot, data);

 scanf(“%d:”,&data);

 UDIO_DO16(slot, data); // Input DO value: 255. DO(Ch8 to Ch15) of I-8050 in Slot 1=0xff.

 printf(“DO(Ch8 to Ch15) of I-8050 in Slot %d=0x%x\n\r”,slot, data);

 Close_Slot(slot);

 // WriteConfig: 0xff00 (ch0 to ch7 is DI mode and ch8 to ch15 is DO mode).

Remark:

(1) This function can be applied on modules: I-8050W.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 103

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.19 ReadDI_LPF

Description:

This function is used to obtain response value from a Low Pass Filter module.

Syntax:

[C]

 short ReadDI_LPF (int slot, DWORD *lpf_Value, int type)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 lpf_Value: [Output] Response time for Low Pass Filter

type: [Input] Low Pass Filter Selection:

1. Setting by Hardware(0ms/1ms/5ms/10ms/20ms/40ms/70ms by Jumper select)

2. Setting by Software (Set Jumper position to CPU)

Return Value:

 Low Pass Filter data.

Examples:

 int RetValue, slot, type;

DWORD read_lpf_Value;

 Open_Slot(slot);

 RetValue= ReadDI_LPF(slot, &read_lpf_Value, type); // type: 0 --> Hardware, 1 --> Software

printf("ReadDI_LPF Value: Response time = %d ms \n", read_lpf_Value);

 Close_Slot(slot);

Remark:

(1) This function can be applied on modules: I-9053P.

(2) H ere is the result of demo – 9053_lpf.exe

LinPAC Standard API Manual version 1.3.1 Page: 104

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.1.20 WriteDI_LPF

Description:

This function is used to configure the Low Pass Filter value which range is 0 ~ 100 ms.

Syntax:

[C]

 short WriteDI_LPF (int slot, DWORD *lpf_Value)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 lpf_Value: [Input] Output response time for Low Pass Filter (Range: 0~ 100 ms)

Return Value:

 0: The function was successfully processed.

 Other: The processing failed. Refer to ‘Error Code Definitions’ for details of other returned

values.

Examples:

 int RetValue, slot;

DWORD write_lpf_Value;

 Open_Slot(slot);

 RetValue=WriteDI_LPF(slot, write_lpf_Value);

printf("WriteDI_LPF = %d ms \n", write_lpf_Value);

 Close_Slot(slot);

Remark:

(1) If you would like to setup LPF by software, it is

necessary to move the jumper cap into CPU position.

(2) This function can be applied on modules: I-9053P.

LinPAC Standard API Manual version 1.3.1 Page: 105

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.2. For I-7000/I-8000/I-9000/I-87000 modules via serial
port

3.2.1. I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 106

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalOut

Description:

This function is used to output the value of the digital output module for I-7000 series modules.

Syntax:

[C]

 WORD DigitalOut(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7011/12/14/42/43/44/50/60/63/65/66/67/80

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit = 0.1 s

 wBuf[5]: [Input] 16-bit digital output data

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 107

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80], szReceive[80];

 float fBuf[12];

 WORD wBuf[12];

 WORD m_port=3, m_address=1;

 WORD m_timeout=50, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0x0f; // 8 DO Channels On.

 wBuf[6]=0;

 DigitalOut(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 108

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalBitOut

Description:

This function is used to set digital output value of the channel No. of I-7000 series modules. The

output value is ‘0’ or ‘1’.

Syntax:

[C]

 WORD DigitalBitOut(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7042/43/44/50/60/63/65/66/67

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: Not used

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Input] The digital output channel No.

 wBuf[8]: [Input] Logic value (0 or 1)

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 109

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=10; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7065;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=0;

 wBuf[7]=0x08; //RL4 relay On.

 wBuf[8]=1;

 DigitalBitOut(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 110

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalOutReadBack

Description:

This function is used to read back the digital output value of I-7000 series modules.

Syntax:

[C]

 WORD DigitalOutReadBack(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7042/43/44/50/60/63/65/66/67/80

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Output] 16-bit digital output data read back

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 111

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD DO;

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=50; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=0;

 DigitalOutReadBack(wBuf, fBuf, szSend, szReceive);

 DO=wBuf[5];

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 112

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalOut_7016

Description:

This function is used to set the digital output value of the specified channel No. of I-7016 module.

If the parameter of wBuf*7+ is ‘0’, it means to output the digital value through Bit0 and Bit1 digital

output channels. If wBuf*7+ is ‘1’, it means to output the digital value through Bit2 and Bit3 digital

output channels.

Syntax:

[C]

 WORD DigitalOut_7016(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7016

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] 2-bit digital output data in decimal format

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Input] 0  Bit0, Bit1 output

 1  Bit2, Bit3 output

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 113

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=50; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7016;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=1;

 wBuf[6]=0;

 wBuf[7]=1; // Set the Bit2, Bit3 digital output.

 DigitalOut_7016(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 114

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalIn

Description:

This function is used to obtain the digital input value from I-7000 series modules.

Syntax:

[C]

 WORD DigitalIn(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7041/44/50/52/53/55/58/60/63/65

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Output] 16-bit digital output data

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 115

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD DI;

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=10; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=0;

 DigitalIn(wBuf, fBuf, szSend, szReceive);

 DI=wBuf[5];

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 116

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInLatch

Description:

This function is used to obtain the latch value of the high or low latch mode of the I-7000 digital

input module.

Syntax:

[C]

 WORD DigitalInLatch(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7041/44/50/52/53/55/58/60/63/65/66

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] 0: low Latch mode; 1: high Latch mode

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Output] Latch value

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 117

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=10; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port ;

 wBuf[1]=m_address ;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum ;

 wBuf[4]=m_timeout ;

 wBuf[5]=1; // Set the high Latch mode.

 wBuf[6]=0;

 wBuf[7]=0x03; // Set the Latch value.

 DigitalInLatch(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 118

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInLatch

Description:

This function is used to clear the latch status of I-7000 digital input module when latch function

has been enabling.

Syntax:

[C]

 WORD ClearDigitalInLatch(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7011/12/14/42/43/44/50/55/58/60/63/65/66/67

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: Not used

 WBuf[6] : [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 119

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=20; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=0;

 ClearDigitalInLatch(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 120

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInCounterRead

Description:

This function is used to obtain the counter event value of the channel number of the I-7000 digital

input module.

Syntax:

[C]

 WORD DigitalInCounterRead(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7041/44/50/51/52/53/55/58/60/63/65

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] The digital input channel No.

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Output] Counter value of the digital input channel No.

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 121

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD DI_counter;

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=10; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum;

 wBuf[4]=100;

 wBuf[5]=0; // Set the digital input channel No.

 wBuf[6]=0;

 DigitalInCounterRead(wBuf, fBuf, szSend, szReceive);

 DI_counter=wBuf[7];

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 122

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInCounter

Description:

This function is used to clear the counter value of the channel number of the I-7000 digital input

module.

Syntax:

[C]

 WORD ClearDigitalInCounter(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7041/44/50/51/52/53/55/58/60/63/65

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] The digital input channel No.

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 123

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=50; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7050;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0; // Set the digital input channel No.

 wBuf[6]=0;

 ClearDigitalInCounter(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 124

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadEventCounter

Description:

This function is used to obtain the value of event counter of I-7000 series modules. This function

only supports I-7011, I-7012, I-7014 and I-7016 modules.

Syntax:

[C]

 WORD ReadEventCounter(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7011/12/14/16

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: Not used

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Output] The value of event counter

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 125

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD Counter;

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=50; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7012;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=0;

 ReadEventCounter(wBuf, fBuf, szSend, szReceive);

 Counter=wBuf[7];

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 126

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearEventCounter

Description:

This function is used to clear the value of event counter of I-7000 series modules. This function

only supports I-7011, I-7012, I-7014 and I-7016 modules.

Syntax:

[C]

 WORD ClearEventCounter(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

 wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7011/12/14/16

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: Not used

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 127

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=50; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7012;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=0;

 ClearEventCounter(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 128

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.2.2. I-8000 series modules

 DigitalOut_8K

Description:

This function is used to set the digital output value of digital output module for I-8000 series

modules.

Syntax:

[C]

 WORD DigitalOut_8K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 dwBuf: WORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8041/42/54/55/56/57/60/63/64/65/66/68

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 16-bit digital output data

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 129

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8041;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=10; // Digital output.

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalOut_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard API Manual version 1.3.1 Page: 130

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalBitOut_8K

Description:

This function is used to set the digital value of the digital output channel No. of I-8000 series

modules. The output value is ‘0’ or ‘1’.

Syntax:

[C]

 WORD DigitalBitOut_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8041/42/54/55/56/57/60/63/64/65/66/68

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 16-bit digital output data

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 dwBuf[8]: [Input] The output channel No.

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 131

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8041;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=10; // Digital output.

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 dwBuf[8]=3;

 DigitalBitOut_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 132

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalIn_8K

Description:

This function is used to obtain the digital input value from I-8000 series modules.

Syntax:

[C]

 WORD DigitalIn_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8040/42/51/52/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Output] 16-bit digital output data

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 133

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=10; // Digital output.

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalIn_8K(dwBuf, fBuf, szSend, szReceive);

 DI=dwBuf[5];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard API Manual version 1.3.1 Page: 134

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInCounterRead_8K

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]

 WORD DigitalInCounterRead_8K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 dwBuf[8]: [Output] DigitalIn counter value

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

LinPAC Standard API Manual version 1.3.1 Page: 135

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI_counter;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalInCounterRead_8K(dwBuf, fBuf, szSend, szReceive);

 DI_counter=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 136

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInCounter_8K

Description:

This function is used to clear the counter value of the digital input channel No. of I-8000 series

modules.

Syntax:

[C]

 WORD ClearDigitalInCounter_8K(DWORD dwBuf[],float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 137

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 ClearDigitalInCounter_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 138

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInLatch_8K

Description:

This function is used to obtain the digital input latch value of the high or low latch mode of I-8000

series modules.

Syntax:

[C]

 WORD DigitalInLatch_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 0  select to latch low

 1  select to latch high

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 dwBuf[8]: [Output] Latched data

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 139

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI_latch;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalInLatch_8K(dwBuf, fBuf, szSend, szReceive);

 DI_latch=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 140

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInLatch_8K

Description:

This function is used to clean the latch status of digital input module when latch function has been

enabled.

Syntax:

[C]

 WORD ClearDigitalInLatch_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: Not used

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 141

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 ClearDigitalInLatch_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 142

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.2.3. I-9000 series modules

 DigitalOut_9K

Description:

This function is used to set the digital output value of digital output module for I-9000 series

modules.

Syntax:

[C]

 WORD DigitalOut_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: WORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9041/57/64

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 16-bit digital output data

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 143

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9041;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=10; // Digital output.

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalOut_9K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard API Manual version 1.3.1 Page: 144

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalBitOut_9K

Description:

This function is used to set the digital value of the digital output channel No. of I-9000 series

modules. The output value is ‘0’ or ‘1’.

Syntax:

[C]

 WORD DigitalBitOut_9K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9041/57/64

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 16-bit digital output data

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 dwBuf[8]: [Input] The output channel No.

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 145

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9041;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=10; // Digital output.

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 dwBuf[8]=3;

 DigitalBitOut_9K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 146

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalIn_9K

Description:

This function is used to obtain the digital input value from I-9000 series modules.

Syntax:

[C]

 WORD DigitalIn_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9040

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Output] 16-bit digital output data

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 147

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=10; // Digital output.

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalIn_9K(dwBuf, fBuf, szSend, szReceive);

 DI=dwBuf[5];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard API Manual version 1.3.1 Page: 148

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInCounterRead_9K

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]

 WORD DigitalInCounterRead_9K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9040/53

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 dwBuf[8]: [Output] DigitalIn counter value

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 149

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI_counter;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalInCounterRead_9K(dwBuf, fBuf, szSend, szReceive);

 DI_counter=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 150

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInCounter_9K

Description:

This function is used to clear the counter value of the digital input channel No. of I-9000 series

modules.

Syntax:

[C]

 WORD ClearDigitalInCounter_9K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9040/53

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 151

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 ClearDigitalInCounter_9K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 152

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInLatch_9K

Description:

This function is used to obtain the digital input latch value of the high or low latch mode of I-9000

series modules.

Syntax:

[C]

 WORD DigitalInLatch_9K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9040/53

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 0  select to latch low

 1  select to latch high

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 dwBuf[8]: [Output] Latched data

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 153

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI_latch;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 DigitalInLatch_9K(dwBuf, fBuf, szSend, szReceive);

 DI_latch=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 154

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInLatch_9K

Description:

This function is used to clean the latch status of digital input module when latch function has been

enabled.

Syntax:

[C]

 WORD ClearDigitalInLatch_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9040/53

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: Not used

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number; the I/O module installed in I-8000 main unit

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 155

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9040;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=0;

 dwBuf[7]=m_slot;

 ClearDigitalInLatch_9K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 156

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

3.2.4. I-87000 series modules

 DigitalOut_87K

Description:

This function is used to set the digital output value of the digital output module for I-87000 series

modules.

Syntax:

[C]

 WORD DigitalOut_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87041/54/55/57/58/63/64/66/68

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 16-bit digital output data

 dwBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 157

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87054;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=3;

 dwBuf[6]=0;

 DigitalOut_87K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 158

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalOutReadBack_87K

Description:

This function is used to read back the digital output value of the digital output module for I-87000

series modules.

Syntax:

[C]

 WORD DigitalOutReadBack_87K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87041/54/55/57/58/63/64/66/68

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Output] 16-bit digital output data

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 159

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DO;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87054;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=0;

 DigitalOutReadBack_87K(dwBuf, fBuf, szSend, szReceive);

 DO=dwBuf[5];

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 160

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalBitOut_87K

Description:

This function is used to set the digital output value of the specific digital output channel No. of the

digital output module for I-87000 series modules. The output value is only for ‘0’ or ‘1’.

Syntax:

[C]

 WORD DigitalBitOut_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87041/54/55/57/58/63/64/66/68

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 1-bit digital output data

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] The digital output channel No.

 dwBuf[8]: [Input] Data to output (0 or 1)

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 161

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=50; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87054;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=0;

 dwBuf[7]=1;

 dwBuf[8]=1;

 DigitalBitOut_87K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 162

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalIn_87K

Description:

This function is used to obtain the digital input value from I-87000 series modules.

Syntax:

[C]

 WORD DigitalIn_87K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Output] 16-bit digital input data

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 163

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87054;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=0;

 DigitalIn_87K(dwBuf, fBuf, szSend, szReceive);

 DI=dwBuf[5];

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 164

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInLatch_87K

Description:

This function is used to obtain the digital input latch value of the high or low latch mode of

I-87000 series modules.

Syntax:

[C]

 WORD DigitalInLatch_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] 0: low latch mode, 1: high latch mode

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Output] Latch value

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 165

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI_latch;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87051;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=0;

 DigitalInLatch_87K(dwBuf, fBuf, szSend, szReceive);

 DI_latch=dwBuf[7];

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 166

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInLatch_87K

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]

 WORD ClearDigitalInLatch_87K(DWORD dwBuf[],float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: Not used

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 167

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87051;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=0;

 ClearDigitalInLatch_87K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 168

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 DigitalInCounterRead_87K

Description:

This function is used to obtain the counter value of the digital input channel No. of I-87000 series

modules.

Syntax:

[C]

 WORD DigitalInCounterRead_87K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The digital input channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Output] Counter value of the digital input channel No.

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 169

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend[80];

 char szReceive[80];

 float fBuf[12];

 DWORD DI_counter;

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87051;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=0;

 DigitalInCounterRead_87K(dwBuf, fBuf, szSend, szReceive);

 DI_counter=dwBuf[7];

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 170

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ClearDigitalInCounter_87K

Description:

This function is used to clear the counter value of the digital input channel No. of I-87000 series

modules.

Syntax:

[C]

 WORD ClearDigitalInCounter_87K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The digital input channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 171

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 char szSend [80];

 char szReceive [80];

 float fBuf [12];

 DWORD dwBuf [12];

 DWORD m_port=3;

 DWORD m_slot=1;

 DWORD m_address=1;

 DWORD m_timeout=10; // the unit=0.1 s

 DWORD m_checksum=0;

 Open_Com(COM1,115200, Data8Bit, NonParity, OneStopBit);

 dwBuf [0]=m_port;

 dwBuf [1]=m_address;

 dwBuf [2]=0x87051;

 dwBuf [3]=m_checksum;

 dwBuf [4]=m_timeout;

 dwBuf [5]=1;

 dwBuf [6]=0;

 ClearDigitalInCounter_87K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 172

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4. Analog Input Functions

Supported LinPACs

The table below lists the common functions of analog input modules that are supported by each

LinPAC. For more details, please refer to the corresponding chapters.

 I-8000/9000 modules via parallel port

About special applications of API function for I-8000/9000 modules, please visit to

✓I-9K Series I/O Module ✓I-8K Series I/O Modules

Note: For more details about old version I-8017 API, please refer to Appendix C1.

 I-7000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

AnalogIn ✔ ✔ ✔ ✔ ✔ ✔ ✔

AnalogInHex ✔ ✔ ✔ ✔ ✔ ✔

AnalogInFsr ✔ ✔ ✔ ✔ ✔ ✔

AnalogInAll ✔ ✔ ✔ ✔ ✔ ✔

ThermocoupleOpen_7011 ✔ ✔ ✔ ✔ ✔ ✔

SetLedDisplay ✔ ✔ ✔ ✔ ✔ ✔

GetLedDisplay ✔ ✔ ✔ ✔ ✔ ✔

Note: LX-Series includes LX-8000 and LX-9000 series.

 I-8000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

AnalogIn_8K ✔ ✔ ✔

AnalogInHex_8K ✔ ✔

AnalogInFsr_8K ✔ ✔

AnalogInAll_8K ✔ ✔

https://www.icpdas.com/en/download/show.php?num=2775&nation=US&kind1=6&kind2=8&model=i-9017&kw=
https://www.icpdas.com/en/download/show.php?num=1869&nation=US&kind1=6&kind2=8&model=I-8014W-G&kw=

LinPAC Standard API Manual version 1.3.1 Page: 173

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I-9000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

AnalogIn_9K ✔ ✔

AnalogInHex_9K ✔

AnalogInFsr_9K ✔

AnalogInAll_9K ✔

 I-87000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

AnalogIn_87K ✔ ✔ ✔

AnalogInHex_87K ✔ ✔

AnalogInFsr_87K ✔ ✔

AnalogInAll_87K ✔ ✔

 I-97000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

AnalogIn_97K ✔

AnalogInHex_97K ✔

AnalogInFsr_97K ✔

AnalogInAll_97K ✔

LinPAC Standard API Manual version 1.3.1 Page: 174

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.1. I-7000 series modules

 AnalogIn

Description:

This function is used to obtain input value form I-7000 series modules.

Syntax:

[C]

 WORD AnalogIn (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] Channel number for multi-channel

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog input value return

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 175

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 Note: ‘wBuf[6]’ is the debug setting. If this parameter is set as ‘1’, user can get whole

 command string and result string from szSend[] and szReceive[] respectively.

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

 float AI;

 float fBuf[12];

 char szSend[80];

 char szReceive[80];

 WORD wBuf[12];

 WORD m_port=3;

 WORD m_address=1;

 WORD m_timeout=10; // the unit=0.1 s

 WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7016;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0;

 wBuf[6]=1;

 AnalogIn(wBuf, fBuf, szSend, szReceive); // szSend=”#02”, szReceive=”>+001.9”.

 AI=fBuf[0]; // AI=1.9.

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 176

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInHex

Description:

This function is used to obtain the analog input value in ‘Hexadecimal’ form I-7000 series modules.

Syntax:

[C]

 WORD AnalogInHex (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] Channel number for multi-channel

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Output] The analog input value in ‘Hexadecimal’ format

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

 Note: Users have to use DCON utility to set up the analog input configuration of the module

in hex format.

LinPAC Standard API Manual version 1.3.1 Page: 177

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7012;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0;

 wBuf[6]=1;

 AnalogInHex(wBuf, fBuf, szSend, szReceive);

AI=wBuf[7]; // Hex format.

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 178

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInFsr

Description:

This function is used to obtain the analog input value in ‘FSR’ format form I-7000 series modules.

The ‘FSR’ means ‘Percent’ format.

Syntax:

[C]

 WORD AnalogInFsr (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] Channel number for multi-channel

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog input value return

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

 Note: Users have to use DCON utility to set up the analog input configuration of the module

in hex format.

LinPAC Standard API Manual version 1.3.1 Page: 179

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=30; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7012;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0;

 wBuf[6]=1;

 AnalogInFsr(wBuf, fBuf, szSend, szReceive);

AI=wBuf[7];

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 180

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInAll

Description:

This function is used to obtain the analog input value of all channels form I-7000 series modules.

Syntax:

[C]

 WORD AnalogInAll (WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7005/15/16/17/18/19/33

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog input value return of channel_0

fBuf[1]: ::: [Output] Analog input value return of channel_1

fBuf[2]: [Output] Analog input value return of channel_2

fBuf[3]: [Output] Analog input value return of channel_3

fBuf[4]: [Output] Analog input value return of channel_4

fBuf[5]: [Output] Analog input value return of channel_5

fBuf[6]: [Output] Analog input value return of channel_6

fBuf[7]: [Output] Analog input value return of channel_7

 szSend: [Input] Command string to be sent to I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 181

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 szReceive: [Output] Result string receiving from I-7000 series modules

 Note: Users have to use DCON utility to set up the analog input configuration of the module

in hex format.

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI[12] , fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12], m_port=3 ,m_address=1;

WORD m_timeout=10, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7017;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=1;

 AnalogInAll(wBuf, fBuf, szSend, szReceive);

AI[0]=fBuf[0];

AI[0]=fBuf[1];

AI[0]=fBuf[2];

AI[0]=fBuf[3];

AI[0]=fBuf[4];

AI[0]=fBuf[5];

AI[0]=fBuf[6];

AI[0]=fBuf[7];

 Close_Com(COM3);

LinPAC Standard API Manual version 1.3.1 Page: 182

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ThermocoupleOpen_7011

Description:

This function is used to detect the thermocouple state of I-7011 modules for the supporting type

‘J, K, T, E, R, S, B, N, C’ is open or close. If the response value is ‘0’, thermocouple I-7011 is working

in close state. If the response value is ‘1’, thermocouple I-7011 is working in open state. For more

information please refer to user manual.

Syntax:

[C]

 WORD ThermocoupleOpen_7011(WORD wBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7011

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

wBuf[5]: [Output] Response value 0  the thermocouple is close

 Response value 1  the thermocouple is open

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 183

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

WORD state;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit is 0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7011;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0;

 wBuf[6]=1;

 ThermocoupleOpen_7011(wBuf, fBuf, szSend, szReceive);

state=wBuf[5];

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 184

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 SetLedDisplay

Description:

This function is used to configure LED display for specified channel of I-7000 analog input serial

modules.

Syntax:

[C]

 WORD SetLedDisplay (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7013/16/33

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

wBuf[5]: [Input] Set display channel

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 185

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7033;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=1; // Set channel 1 display.

 wBuf[6]=1;

 SetLedDisplay(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 186

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 GetLedDisplay

Description:

This function is used to get the current setting of the specified channel for LED display channel for

specified channel of I-7000 analog input serial modules.

Syntax:

[C]

 WORD GetLedDisplay (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7013/16/33

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

wBuf[5]: [Output] Current channel for LED display

 0=channel_0

 1=channel_1

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 187

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

0 is for Success.

Not 0 is for Failure.

Examples:

WORD led;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7033;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[6]=1;

 GetLedDisplay(wBuf, fBuf, szSend, szReceive);

 Led=wBuf[5];

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 188

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.2. I-8000 series modules

 AnalogIn_8K

Description:

This function is used to obtain input value form I-8000 analog input series modules.

Syntax:

[C]

 WORD AnalogIn_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number of analog input module

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog input value

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 189

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogIn_8K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard API Manual version 1.3.1 Page: 190

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInHex_8K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form I-8000 analog input series

modules.

Syntax:

[C]

 WORD AnalogInHex_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, from 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting , the unit=0.1 s

 dwBuf[5]: [Input] Channel number of analog input module

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

dwBuf[8]: [Output] The analog input value in Hex format

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 191

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

DWORD AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogInHex_8K(dwBuf, fBuf, szSend, szReceive);

AI=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 192

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInFsr_8K

Description:

This function is used to obtain input value in ‘FSR’ form I-8000 analog input series modules. The

‘FSR’ means ‘Percent’ format.

Syntax:

[C]

 WORD AnalogInFsr_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number of analog input module

 dwBuf[6]: [Input] 0  No save to szSend &szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

 fBuf: Float input/Output argument table

 fBuf[0]: [Output] The analog input value

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 193

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogInFsr_8K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 194

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInAll_8K

Description:

This function is used to obtain input value of all channels form I-8000 analog input series modules.

Syntax:

[C]

 WORD AnalogInAll_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

 fBuf: Float input/Output argument table

 fBuf[0]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 195

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI[12], fBuf[12];

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;

DWORD,m_timeout=50, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogInAll_8K(dwBuf, fBuf, szSend, szReceive);

AI[0]=fBuf[0];

AI[1]=fBuf[1];

AI[2]=fBuf[2];

AI[3]=fBuf[3];

AI[4]=fBuf[4];

AI[5]=fBuf[5];

AI[6]=fBuf[6];

AI[7]=fBuf[7];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 196

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.3. I-9000 series modules

 AnalogIn_9K

Description:

This function is used to obtain input value form I-9000 analog input series modules.

Syntax:

[C]

 WORD AnalogIn_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number of analog input module

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog input value

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 197

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit is 0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogIn_9K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard API Manual version 1.3.1 Page: 198

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInHex_9K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form I-9000 analog input series

modules.

Syntax:

[C]

 WORD AnalogInHex_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, from 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting , the unit=0.1 s

 dwBuf[5]: [Input] Channel number of analog input module

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

dwBuf[8]: [Output] The analog input value in Hex format

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 199

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

DWORD AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit is 0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogInHex_9K(dwBuf, fBuf, szSend, szReceive);

AI=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 200

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInFsr_9K

Description:

This function is used to obtain input value in ‘FSR’ form I-9000 analog input series modules. The

‘FSR’ means ‘Percent’ format.

Syntax:

[C]

 WORD AnalogInFsr_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number of analog input module

 dwBuf[6]: [Input] 0  No save to szSend &szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

 fBuf: Float input/Output argument table

 fBuf[0]: [Output] The analog input value

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 201

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit is 0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogInFsr_9K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 202

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInAll_9K

Description:

This function is used to obtain input value of all channels form I-9000 analog input series modules.

Syntax:

[C]

 WORD AnalogInAll_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9017

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

dwBuf[7]: [Input] Slot number

 fBuf: Float input/Output argument table

 fBuf[0]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 203

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI[12], fBuf[12];

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;

DWORD m_timeout=20, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=1;

 dwBuf[7]=1;

 AnalogInAll_9K(dwBuf, fBuf, szSend, szReceive);

AI[0]=fBuf[0];

AI[1]=fBuf[1];

AI[2]=fBuf[2];

AI[3]=fBuf[3];

AI[4]=fBuf[4];

AI[5]=fBuf[5];

AI[6]=fBuf[6];

AI[7]=fBuf[7];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 204

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.4. I-87000 series modules

 AnalogIn_87K

Description:

This function is used to obtain input value form I-87000 series analog input modules.

Syntax:

[C]

 WORD AnalogIn_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87013/15/16/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] The analog input value return

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 205

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=20; // the unit is 0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogIn_87K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 206

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInHex_87K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form I-87000 series analog input

modules.

Syntax:

[C]

 WORD AnalogInHex_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87013/15/16/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Output] The analog input value in ‘Hex’ format

fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 207

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

DWORD AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogInHex_87K(dwBuf, fBuf, szSend, szReceive);

AI=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 208

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInFsr_87K

Description:

This function is used to obtain input value in ‘FSR’ form I-87000 series analog input modules.

Syntax:

[C]

 WORD AnalogInFsr_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87013/15/16/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[0]: [Output] The analog input value

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 209

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

DWORD AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogInHex_87K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 210

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInAll_87K

Description:

This function is used to obtain input value of all channels form I-87000 series analog input

modules.

Syntax:

[C]

 WORD AnalogInAll_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87013/15/16/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table.

fBuf[0]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 211

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI[12], fBuf[12];

DWORD AI;

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;

DWORD m_timeout=50, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=1;

 AnalogInAll_87K(dwBuf, fBuf, szSend, szReceive);

AI[0]=fBuf[0];

AI[1]=fBuf[1];

AI[2]=fBuf[2];

AI[3]=fBuf[3];

AI[4]=fBuf[4];

AI[5]=fBuf[5];

AI[6]=fBuf[6];

AI[7]=fBuf[7];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 212

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

4.5. I-97000 series modules

 AnalogIn_97K

Description:

This function is used to obtain input value form I-97000 series analog input modules.

Syntax:

[C]

 WORD AnalogIn_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

 dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97015/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

 fBuf[0]: [Output] The analog input value return

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 213

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 float AI;

 float fBuf[12];

 char szSend[80];

 char szReceive[80];

 DWORD dwBuf[12];

 DWORD m_port=3;

 DWORD m_address=1;

 DWORD m_timeout=30; // the unit is 0.1 s

 DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogIn_97K(dwBuf, fBuf, szSend, szReceive);

 AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 214

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInHex_97K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form I-97000 series analog input

modules.

Syntax:

[C]

 WORD AnalogInHex_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97015/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Output] The analog input value in ’Hex’ format

fBuf: Not used

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 215

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

DWORD AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit is 0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogInHex_97K(dwBuf, fBuf, szSend, szReceive);

AI=dwBuf[8];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 216

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInFsr_97K

Description:

This function is used to obtain input value in ‘FSR’ form I-97000 series analog input modules.

Syntax:

[C]

 WORD AnalogInFsr_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97015/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[0]: [Output] The analog input value

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 217

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

DWORD AI;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit is 0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogInHex_97K(dwBuf, fBuf, szSend, szReceive);

AI=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 218

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogInAll_97K

Description:

This function is used to obtain input value of all channels form I-97000 series analog input

modules.

Syntax:

[C]

 WORD AnalogInAll_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97015/17/18/19

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 219

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float AI[12], fBuf[12];

DWORD AI;

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;

DWORD m_timeout=50, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97017;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[6]=1;

 AnalogInAll_97K(dwBuf, fBuf, szSend, szReceive);

AI[0]=fBuf[0];

AI[1]=fBuf[1];

AI[2]=fBuf[2];

AI[3]=fBuf[3];

AI[4]=fBuf[4];

AI[5]=fBuf[5];

AI[6]=fBuf[6];

AI[7]=fBuf[7];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 220

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5. Analog Output Functions

Supported LinPACs

The table below lists the common functions of analog output modules that are supported by each

LinPAC. For more details, please refer to the corresponding chapters.

 I-8000/9000 modules via parallel port

About special applications of API function for I-8000/9000 modules, please visit to

http://ftp.icpdas.com/pub/cd/linpac/napdos/lp-8x4x/user_manual/

Note: For more details about old version I-8024 API, please refer to Appendix C2.

 I-7000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

AnalogOut ✔ ✔ ✔ ✔ ✔ ✔ ✔

AnalogOutReadBack ✔ ✔ ✔ ✔ ✔ ✔

AnalogOutHex ✔ ✔ ✔ ✔ ✔ ✔

AnalogOutFsr ✔ ✔ ✔ ✔ ✔ ✔

AnalogOutReadBackHex ✔ ✔ ✔ ✔ ✔ ✔

AnalogOutReadBackFsr ✔ ✔ ✔ ✔ ✔ ✔

Note: LX-Series includes LX-8000 and LX-9000 series.

 I-8000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

AnalogOut_8K ✔ ✔ ✔

AnalogOutReadBack_8K ✔ ✔

ReadConfigurationStatus_8K ✔ ✔

SetStartUpValue_8K ✔ ✔

ReadStartUpValue_8K ✔ ✔

http://ftp.icpdas.com/pub/cd/linpac/napdos/lp-8x4x/user_manual/

LinPAC Standard API Manual version 1.3.1 Page: 221

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I-9000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

AnalogOut_9K ✔ ✔

AnalogOutReadBack_9K ✔

ReadConfigurationStatus_9K ✔

SetStartUpValue_9K ✔

ReadStartUpValue_9K ✔

 I-87000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

AnalogOut_87K ✔ ✔ ✔

AnalogOutReadBack_87K ✔ ✔

ReadConfigurationStatus_87K ✔ ✔

SetStartUpValue_87K ✔ ✔

ReadStartUpValue_87K ✔ ✔

 I-97000 modules via serial port

 Models

 Functions
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

AnalogOut_97K ✔ ✔

AnalogOutReadBack_97K ✔

ReadConfigurationStatus_97K ✔

SetStartUpValue_97K ✔

ReadStartUpValue_97K ✔

LinPAC Standard API Manual version 1.3.1 Page: 222

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5.1. I-7000 series modules

 AnalogOut

Description:

This function is used to obtain analog value from analog output module of I-7000 series modules.

Syntax:

[C]

 WORD AnalogOut(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 [LX-Series]

 [Input] ttyS0~ttyS34, ttySA0, ttySA1

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7016/21/22/24

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, n the unit=0.1 s

 wBuf[5]: [Input] The analog output channel number

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table.

fBuf[0]: [Input] Analog output value

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 223

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit is 0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7016;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 // wBuf[5]=0; // I-7016 no used.

 wBuf[6]=1;

fBuf[0]=3.5 // Excitation Voltage output +3.5V.

 AnalogOut(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 224

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBack

Description:

This function is used to obtain read back the analog value of analog output modules of I-7000

series modules. There are two types of read back functions, as described in the following:

1. Last value is read back by $AA6 command.

2. Analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBack(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7016/21/22/24

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] 0  Command $AA6 read back

 1  Command $AA8 read back

 Note: (1) When the module is I-7016: Don’t care

 (2) When the module is I-7021/22, analog output of current path read back ($AA8)

 (3) When the module is I-7024, the updating value in a specific Slew rate ($AA8)

 (For more information, please refer to I-7021/22/24 manual)

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

LinPAC Standard API Manual version 1.3.1 Page: 225

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 wBuf[7]: [Input] The analog output channel No. (0 to 3) of module I-7024

 No used for single analog output module

fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog output read back value

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Volt, fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12], m_port=3, m_address=1;

WORD m_timeout=50, m_checksum=0; // the unit=0.1 s

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7021;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0; // $AA6 command.

 wBuf[6]=1;

wBuf[7]=1;

 AnalogOutReadBack(wBuf, fBuf, szSend, szReceive);

 Volt=fBuf[0]; // Receive: ‘!01+2.57’ excitation voltage, Volt=2.57.

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 226

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutHex

Description:

This function is used to obtain analog value of analog output modules through Hex format.

Syntax:

[C]

 WORD AnalogOutHex(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] The analog output channel number

 (No used for single analog output module)

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

wBuf[7]: [Input] Analog output value in Hexadecimal data format

fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 227

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=30; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7022;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=1; // Channel 1.

 wBuf[6]=1;

wBuf[7]=0x250;

 AnalogOutHex(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 228

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutFsr

Description:

This function is used to obtain analog value of analog output modules through % of span data

format. This function only can be used after analog output modules is set as ‘FSR’ output mode.

Syntax:

[C]

 WORD AnalogOutFsr(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] The analog output channel number

 (No used for single analog output module)

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table

fbuf[0]: [Input] Analog output value in % of Span data format

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 229

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7022;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=1; // Channel 1.

 wBuf[6]=1;

fBuf[0]=50;

 AnalogOutFsr(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 230

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBackHex

Description:

This function is used to obtain read back the analog value of analog output modules in Hex format

for I-7000 series modules. There are two types of read back functions, as described in the

following:

1. Last value is read back by $AA6 command.

2. Analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBackHex(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] 0  Command $AA6 read back

 1  Command $AA8 read back

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Input] The analog output channel No.

 No used for single analog output module

wBuf[9]: [Output] Analog output value in Hexadecimal data format

fBuf: Not used

LinPAC Standard API Manual version 1.3.1 Page: 231

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

WORD Volt;

float fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12], m_port=3, m_address=1;

WORD m_timeout=50, m_checksum=0; // the unit is 0.1 s for m_timeout

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7021;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0; // Command $AA6.

 wBuf[6]=1;

wBuf[7]=0;

 AnalogOutReadBackHex(wBuf, fBuf, szSend, szReceive);

 Volt=wBuf[9];

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 232

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBackFsr

Description:

This function is used to obtain read back the analog value of analog output modules through % of

span data format for I-7000 series modules. There are two types of read back functions, as

described in the following:

1. Last value is read back by $AA6 command.

2. Analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBackFsr(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [LP-2x4x/52xx]

 [Input] COM1, COM2, COM4, COM5

 (1=COM1, 2=COM2=/dev/ttyO2, 4=COM4=/dev/ttyO4, 5=COM5=/dev/ttyO5)

 [LP-51xx/8x2x/8x4x/9x2x]

 [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xff

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting, the unit=0.1 s

 wBuf[5]: [Input] 0  Command $AA6 read back

 1  Command $AA8 read back

 wBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Input] The analog output channel No.

 No used for single analog output module

fBuf: Float input/output argument table

fBuf[0]: [Output] Analog output value in % Span data format

LinPAC Standard API Manual version 1.3.1 Page: 233

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 szSend: [Input] Command string to be sent to I-7000 series modules

 szReceive: [Output] Result string receiving from I-7000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Volt, fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1 s

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0]=m_port;

 wBuf[1]=m_address;

 wBuf[2]=0x7021;

 wBuf[3]=m_checksum;

 wBuf[4]=m_timeout;

 wBuf[5]=0; // Command $AA6.

 wBuf[6]=1;

wBuf[7]=0;

 AnalogOutReadBackFsr(wBuf, fBuf, szSend, szReceive);

 Volt=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 234

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5.2. I-8000 series modules

 AnalogOut_8K

Description:

This function is used to obtain analog value of analog output module for I-8000 series modules.

Syntax:

[C]

 WORD AnalogOut_8K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Float Input/Output argument table

fBuf[0]: [Input] Analog output value

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 235

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

fBuf[0]=2.55;

 AnalogOut_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard API Manual version 1.3.1 Page: 236

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBack_8K

Description:

This function is used to read back the analog value of analog output module for I-8000 series

modules.

Syntax:

[C]

 WORD AnalogOutReadBack_8K(DWORD dwBuf[], float fBuf[], char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number

fBuf: Float Input/Output argument table

fBuf[0]: [Input] Analog output value

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 237

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float Valot;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 AnalogOutReadBack_8K(dwBuf, fBuf, szSend, szReceive);

 Volt=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 238

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadConfigurationStatus_8K

Description:

This function is used to read configuration status of analog output module for I-8000 series

modules.

Syntax:

[C]

 WORD ReadConfigurationStatus_8K(DWORD dwBuf[],float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

dwBuf[8]: ::: [Output] Output range: 0x30, 0x31,0x32

dwBuf[9]: ::: [Output] Slew rate

fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 239

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadConfigurationStatus_8K(dwBuf, fBuf, szSend, szReceive);

 Status=dwBuf[8];

Rate=dwBuf[9];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 240

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 SetStartUpValue_8K

Description:

This function is used to setting start-up value of analog output module for I-8000 series modules.

Syntax:

[C]

 WORD SetStartUpValue_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Not used

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 241

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 SetStartUpValue_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 242

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadStartUpValue_8K

Description:

This function is used to read start-up value of analog output module for I-8000 series modules.

Syntax:

[C]

 WORD ReadStartUpValue_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x8024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Float input/output argument table

fBuf[0]: [Output] Start-Up value

 szSend: [Input] Command string to be sent to I-8000 series modules

 szReceive: [Output] Result string receiving from I-8000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 243

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x8024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadStartUpValue_8K(dwBuf, fBuf, szSend, szReceive);

 StartUp=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 244

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5.3. I-9000 series modules

 AnalogOut_9K

Description:

This function is used to obtain analog value of analog output module for I-9000 series modules.

Syntax:

[C]

 WORD AnalogOut_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Float Input/Output argument table

fBuf[0]: [Input] Analog output value

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 245

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

fBuf[0]=2.55;

 AnalogOut_9K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard API Manual version 1.3.1 Page: 246

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBack_9K

Description:

This function is used to read back the analog value of analog output module for I-9000 series

modules.

Syntax:

[C]

 WORD AnalogOutReadBack_9K(DWORD dwBuf[],float fBuf[],char szSend[],

 char szReceive[]

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number

fBuf: Float Input/Output argument table

fBuf[0]: [Input] Analog output value

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 247

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float Valot;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 AnalogOutReadBack_9K(dwBuf, fBuf, szSend, szReceive);

 Volt=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 248

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadConfigurationStatus_9K

Description:

This function is used to read configuration status of analog output module for I-9000 series

modules.

Syntax:

[C]

 WORD ReadConfigurationStatus_9K(DWORD dwBuf[],float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

dwBuf[8]: ::: [Output] Output range: 0x30, 0x31,0x32

dwBuf[9]: ::: [Output] Slew rate

fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 249

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadConfigurationStatus_9K(dwBuf, fBuf, szSend, szReceive);

 Status=dwBuf[8];

Rate=dwBuf[9];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 250

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 SetStartUpValue_9K

Description:

This function is used to setting start-up value of analog output module for I-9000 series modules.

Syntax:

[C]

 WORD SetStartUpValue_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Not used

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 251

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 SetStartUpValue_9K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 252

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadStartUpValue_9K

Description:

This function is used to read start-up value of analog output module for I-9000 series modules.

Syntax:

[C]

 WORD ReadStartUpValue_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x9024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Float input/output argument table

fBuf[0]: [Output] Start-Up value

 szSend: [Input] Command string to be sent to I-9000 series modules

 szReceive: [Output] Result string receiving from I-9000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 253

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x9024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadStartUpValue_9K(dwBuf, fBuf, szSend, szReceive);

 StartUp=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 254

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5.4. I-87000 series modules

 AnalogOut_87K

Description:

This function is used to output input value form I-87000 series analog input modules.

Syntax:

[C]

 WORD AnalogOut_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] The analog output value

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 255

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 fBuf[0]=2.55; // +2.55V.

AnalogOut_87K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard API Manual version 1.3.1 Page: 256

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBack_87K

Description:

This function is used to read back the analog value of analog output module for I-87000 series

modules. There are two types of read back functions, as described in the following:

1. Last value is read back by $AA6 command.

2. Analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBack_87K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[0]: [Output] Analog output read back value

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 257

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogOutReadBack_87K(dwBuf, fBuf, szSend, szReceive);

 Volt=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 258

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadConfigurationStatus_87K

Description:

This function is used to read configuration status of analog output module for I-87000 series

modules.

Syntax:

[C]

 WORD ReadConfigurationStatus_87K(DWORD dwBuf[], float fBuf[], char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting , the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

dwBuf[8]: ::: [Output] Output range: 0x30, 0x31,0x32

dwBuf[9]: ::: [Output] Slew rate

fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 259

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadConfigurationStatus_87K(dwBuf, fBuf, szSend, szReceive);

 Status=dwBuf[8];

Rate=dwBuf[9];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 260

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 SetStartUpValue_87K

Description:

This function is used to setting start-up value of analog output module for I-87000 series modules.

Syntax:

[C]

 WORD SetStartUpValue_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Not used

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 261

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 SetStartUpValue_87K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 262

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadStartUpValue_87K

Description:

This function is used to setting start-up value of analog output module for I-87000 series modules.

Syntax:

[C]

 WORD ReadStartUpValue_87K(DWORD dwBuf[], float fBuf[], char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x87024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: ::: [Input] Slot number

fBuf: Float input/output argument table

fBuf[0]: Start-Up value

 szSend: [Input] Command string to be sent to I-87000 series modules

 szReceive: [Output] Result string receiving from I-87000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 263

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

Float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x87024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadStartUpValue_87K(dwBuf, fBuf, szSend, szReceive);

 StartUp=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 264

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

5.5. I-97000 series modules

 AnalogOut_97K

Description:

This function is used to output input value form I-97000 series analog input modules.

Syntax:

[C]

 WORD AnalogOut_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] Channel number for multi-channel

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table

fBuf[0]: [Output] The analog output value

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 265

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 fBuf[0]=2.55; // +2.55V.

AnalogOut_97K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard API Manual version 1.3.1 Page: 266

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 AnalogOutReadBack_97K

Description:

This function is used to read back the analog value of analog output module for I-97000 series

modules. There are two types of read back functions, as described in the following:

1. Last value is read back by $AA6 command.

2. Analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBack_97K(DWORD dwBuf[], float fBuf[], char szSend[],

char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[0]: :: :::: [Output] Analog output read back value

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 267

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

 AnalogOutReadBack_97K(dwBuf, fBuf, szSend, szReceive);

 Volt=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 268

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadConfigurationStatus_97K

Description:

This function is used to read configuration status of analog output module for I-97000 series

modules.

Syntax:

[C]

 WORD ReadConfigurationStatus_97K(DWORD dwBuf[],float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number

dwBuf[8]: [Output] Output range: 0x30, 0x31,0x32

dwBuf[9]: [Output] Slew rate

fBuf: Not used

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 269

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadConfigurationStatus_97K(dwBuf, fBuf, szSend, szReceive);

 Status=dwBuf[8];

Rate=dwBuf[9];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 270

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 SetStartUpValue_97K

Description:

This function is used to setting start-up value of analog output module for I-97000 series modules.

Syntax:

[C]

 WORD SetStartUpValue_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number

fBuf: Not used

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 271

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=1;

 dwBuf[6]=1;

dwBuf[7]=1;

 SetStartUpValue_97K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 272

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ReadStartUpValue_97K

Description:

This function is used to setting start-up value of analog output module for I-97000 series modules.

Syntax:

[C]

 WORD ReadStartUpValue_97K(DWORD dwBuf[], float fBuf[], char szSend[],

 char szReceive[])

Parameter:

 dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255

 dwBuf[1]: [Input] Module address, form 0x00 to 0xff

 dwBuf[2]: [Input] Module ID, 0x97024

 dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 dwBuf[4]: [Input] Timeout setting, the unit=0.1 s

 dwBuf[5]: [Input] The defined analog output channel No.

 dwBuf[6]: [Input] 0  No save to szSend & szReceive

 1  Save to szSend & szReceive

 dwBuf[7]: [Input] Slot number

fBuf: Float input/output argument table

fBuf[0]: Start-Up value

 szSend: [Input] Command string to be sent to I-97000 series modules

 szReceive: [Output] Result string receiving from I-97000 series modules

Return Value:

 0: The function was successfully processed.

 Other: The processing failed.

 Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 273

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

Float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1 s

DWORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 dwBuf[0]=m_port;

 dwBuf[1]=m_address;

 dwBuf[2]=0x97024;

 dwBuf[3]=m_checksum;

 dwBuf[4]=m_timeout;

 dwBuf[5]=0;

 dwBuf[6]=1;

dwBuf[7]=1;

 ReadStartUpValue_97K(dwBuf, fBuf, szSend, szReceive);

 StartUp=fBuf[0];

 Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 274

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

6. Error Code Explanation

Error Code Explanation Error Code Explanation

0 NoError -1 ID_ERROR

1 FunctionError -2 SLOT_ERROR

2 PortError -3 CHANNEL_ERROR

3 BaudrateError -4 HARDWARE_LPF_ERROR

4 DataError -5 SOFTWARE_LPF_ERROR

5 StopError -6 NOT_SUPPORT_ERROR

6 ParityError

7 CheckSumError

8 ComPortNotOpen

9 SendThreadCreateError

10 SendCmdError

11 ReadComStatusError

12 StrCheck Error

13 CmdError

14 X

15 TimeOut

16 X

17 ModuleId Error

18 AdChannelError

19 UnderRang

20 ExceedRange

21 InvalidateCounterValue

22 InvalidateCounterValue

23 InvalidateGateMode

24 InvalidateChannelNo

25 ComPortInUse

LinPAC Standard API Manual version 1.3.1 Page: 275

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7. Demos for I/O Modules using C Language

In this section, we will focus on examples for the description and application of the control

functions on the I-7k/I-8k/I-9k/I-87k/I-97k series modules for use with the LinPAC. For Windows

platform of the PXA270 series, after installing the LinPAC SDK, the demo programs provided below

can be found in the ‘C:/cygwin/LinCon8k/examples’ folder in Windows PC.

LinPAC Standard API Manual version 1.3.1 Page: 276

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7.1. DI/DO Control Demo

7.1.1. I-7K Modules

The i7kdio.c demo application illustrates how to control DI/DO function using an I-7050 module (8

DO channels and 7 DI channels) connected to an RS-485 network. The address of the module is 02

and the Baud Rate is 9600 bps.

The result of executing this demo program is that DO channels 0 to 7 on the I-7050 module will be

set as the channels, and DI channel 2 on the I-7050 module will be set as the input channel. The

source code for the demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80], ans;

WORD wBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int wRetVal;

 // Check Open_Com3

 wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed!\n”);

 return (-1);

 }

 // ***** 7050 DO && DI Parameter *******

 wBuf[0] = 3; //COM Port.

 wBuf[1] = 0x02; //Address.

 wBuf[2] = 0x7050; //ID.

 wBuf[3] = 0; //CheckSum disabled.

LinPAC Standard API Manual version 1.3.1 Page: 277

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 wBuf[4] = 100; //TimeOut , the unit=0.1s

 wBuf[5] = 0x0f; //Set 8 DO Channels to ON.

 wBuf[6] = 0; //Debug string.

 // 7050 DO Output

 wRetVal = DigitalOut(wBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 printf(“DigitalOut_7050 Error !, Error Code=%d\n”, wRetVal);

 printf(“The DO of 7050 : %u \n”, wBuf[5]);

 // 7050 DI Input

 DigitalIn(wBuf, fBuf, szSend, szReceive);

 printf(“The DI of 7050 : %u \n”, wBuf[5]);

 Close_Com(COM3);

 return 0;

}

Follow the procedure below to achieve the desired results:

STEP 1: Write i7kdio.c

Copy the above source code above to a blank text file and save it using the name - i7kdio.c or

open the file from the C:\cygwin\LinCon8k\examples\i7k folder.

STEP 2: Compile i7kdio.c to an executable file - i7kdio.exe

Two methods can be used to compile the program, each of which is introduced here:

Method One – Using a Batch File (lcc.bat)

Open the LinPAC Build Environment by clicking the Start > Programs > ICPDAS > LinPAC SDK >

LinPAC Build Environment to open LinPAC SDK window, and change the path to

C:\cygwin\LinCon8k\examples\i7k. To compile the i7kdio.c file to an executable file, type lcc

i7kdio (refer to Figure 7.1.1-1).

LinPAC Standard API Manual version 1.3.1 Page: 278

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Figure 7.1.1-1. Using a Batch File to compile i7kdio.c to an executable file

Method Two – Using Compile Instructions

When using this method, type cd C:\cygwin\LinCon8k\examples\i7k command prompt to change

the path. To compile i7kdio.c to an executable file, type arm-linux-gcc –I../../include –lm –o

i7kdio.exe i7kdio.c ../../lib/libi8k.a (refer to Figure 7.1.1-2).

Figure 7.1.1-2. Using Compile Instructions to compile i7kdio.c to an executable file

STEP 3: Transfer i7kdio.exe to the LinPAC

Two methods can be used to transfer the executable file to the LinPAC, each of which is

introduced here.

LinPAC Standard API Manual version 1.3.1 Page: 279

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Method One – Using an FTP application

(1) Open a FTP application and create a new FTP connection. Enter the login details for the

LinPAC, including the Host name (or IP address), Username and Password. The default value

for both the User_Name and the Password is ‘root’. Click the ‘Quickconnect’ button to

connect to the ftp server on the LinPAC. Refer to Figure 7.1.1-3 below for more details.

Figure 7.1.1-3. Using an FTP application

(2) Upload the file i7kdio.exe file to the LinPAC (refer to Figure 7.1.1-4).

Figure 7.1.1-4. Upload the i7kdio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 280

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

(3) Choose i7kdio.exe in the LinPAC and Click the right mouse button to select the ‘Permissions’

option for the menu. Enter ‘777’ in the Numeric textbox to set the file permissions to

readable, writeable, and executable. Refer to Figures 7.1.1-5 and 7.1.1-6 below for more

details.

Figure 7.1.1-5. Set the file permissions

Figure 7.1.1-6. Enter ‘777’ in the Numeric textbox

LinPAC Standard API Manual version 1.3.1 Page: 281

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Method Two – Using a DOS Command Prompt

(1) Open DOS Command Prompt and enter the IP Address of the server on the LinPAC in order to

connect to the ftp server of the LinPAC. Enter the User Name and Password (the default

value is root) to login to the LinPAC ftp server.

(2) Files must be transferred in binary mode, so type ‘bin’ to set the mode.

At Command Prompt, type put c:/cygwin/lincon8k/examples/i7k/i7kdio.exe i7kdio.exe to

transfer the i7kdio.exe file to the LinPAC. Once the file has been transferred, the ‘Transfer

complete’ message will be displayed. Refer to Figure 7.1.1-7 below for more details.

Figure 7.1.1-7. Using a DOS Command to transferred file

STEP 4: Use Telnet to the LinPAC to execute i7kdio.exe

At the Command Prompt, type telnet IP Address of the LinPAC to establish a connection to the

LinPAC. Enter User Name and Password (the default value is root) to login to the LinPAC.

At Command Prompt, type chmod 777 i7kdio.exe to set the i7kdio.exe file to executable, and then

type i7kdio.exe to execute the i7kdio.exe file. Refer to Figures 7.1.1-8 and 7.1.1-9 below for more

details.

Figure 7.1.1-8. Type telnet IP Address and to establish a connection with the LinPAC

LinPAC Standard API Manual version 1.3.1 Page: 282

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Figure 7.1.1-9. Execute the i7kdio.exe file

The message ‘The DO of I-7050：255 (=2 ^ 8 -1)’ indicates that DO channels 0 to 7 will be used to

output data, and the message ‘The DI of I-7050：123 (=127-2 ^ 2)’ indicates that DI channel 2 will

be used as the input channel.

LinPAC Standard API Manual version 1.3.1 Page: 283

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7.1.2. I-87K Modules

If there are I-87KW DIO modules inserted in the slots on the LP-8000, the ‘Open_Slot()’ and

‘ChangeToSlot()’ functions, must be called before other functions for the I-87KW modules and

used, and the ‘Close_Slot()’ function also needs to be called at the end of the program.

The i87kdio.c demo program will illustrate how to control the DI/DO function using an I-87054W

module (8 DO channels and 8 DI channels). The module is in slot 3 on the LP-8000. The address

and baudrate in the LP-8000 are 00 and 115200 respectively, they were fixed by the library. The

result of this demo program is that DO channels 0 to 7 on the I-87054W module will be set as the

output channels, and DI channel 1 on the I-87054W module will be set as the input channel. The

source code for this demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

int main()

{

 int i, wRetVal;

 DWORD temp;

 //Check Open_Slot

 wRetVal = Open_Slot(0);

 if (wRetVal > 0) {

 printf(“open Slot failed. \n”);

 return (-1);

 }

 //Check Open_Com1

 wRetVal = Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed. \n”);

 return (-1);

 }

 //Choose Slot3

 ChangeToSlot(3);

LinPAC Standard API Manual version 1.3.1 Page: 284

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 //--- Digital Output ---- **(DigitalOut_87k()**)

 dwBuf[0] = 1; //COM Port.

 dwBuf[1] = 00; //Address.

 dwBuf[2] = 0x87054 //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut , the unit=0.1s

 dwBuf[5] = 0xff; //Set digital output.

 dwBuf[6] = 0; //Debug string.

 wRetVal = DigitalOut_87k(dwBuf, fBuf, szSend, szReceive); //DO Output.

 printf(“DO Value= %u”, dwBuf[5]);

 //--- digital Input ---- **(DigitalIn_87k()**)

 dwBuf[0] = 1; //COM Port.

 dwBuf[1] = 00; //Address.

 dwBuf[2] = 0x87054; //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut , the unit=0.1s

 dwBuf[6] = 0; //Debug string.

 getch();

 DigitalIn_87k(dwBuf, fBuf, szSend, szReceive); //DI Input.

 printf(“DI= %u”,dwBuf*5+)

 //--- digital output ---- ** Close DO **

 dwBuf[0] = 1; //COM Port.

 dwBuf[1] = 00; //Address.

 dwBuf[2] = 0x87054; //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut, the unit=0.1s

 dwBuf[5] = 0x00; //Digital output.

 dwBuf[6] = 0; //Debug string .

 getch(); //Press any key to continue.

 wRetVal = DigitalOut_87k(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM1);

 Close_SlotAll();

 return 0;

}

LinPAC Standard API Manual version 1.3.1 Page: 285

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7.1.3. I-8K Modules

The i8kdio.c demo program illustrates how to control the DI/DO functions using I-8055W modules

(8 DO channels and 8 DI channels) that are inserted into slot 3 on the LinPAC. The address and

baudrate for the LinPAC are 00 and 115200 bps separately, and they were fixed by library. The

result of executing this demo program is that DO channels 0 to 7 on the I-8055W module to will

be set as the output channels, and DI channel 0 on I-8055W module will be set as the input

channel. The source code for this demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int i,j, wRetVal;

 WORD Doval,temp;

 wRetVal = Open_Slot(3);

 if (wRetVal > 0) {

 printf(“open Slot failed. \n”);

 return (-1);

 }

 //I-8055W_DO

 DO_8(3,255);

 printf(“DO of I-8055 = 0x%x \n”, 255);

 //I-8055W_DI

 printf(“DI of I-8055 = %x”,DI_8(3));

 Close_Slot(3);

 return 0;

}

 Figure 7.1.3-1. Execute the i8kdio.exe file

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 7.1.3-1 above illustrates the result of the execution.

LinPAC Standard API Manual version 1.3.1 Page: 286

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7.2. AI/AO Control Demo

7.2.1. I-7K Modules

The i7kaio.c demo application illustrates how to control the AI/AO functions using an I-7017

module (8 AI channels) and an I-7021 modules (1 AO channel) connected to an RS-485 network.

The addresses for the I-7021 and I-7017 modules are 05 and 03, respectively, and the baudrate for

both modules is 9600 bps. The result of executing this demo program is that the AO channel on

the I-7021 module will be set to output a voltage of 3.5V, and AI channel 2 on the I-7017 module

will be set as the input channel. The source code for this demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

WORD wBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int i, j, wRetVal;

 DWORD temp;

 wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed!\n”);

 return (-1);

 }

 //--- Analog output ---- **** 7021 – AO ****

 i = 0;

 wBuf[0] = 3; //COM Port.

 wBuf[1] = 0x05; //Address.

 wBuf[2] = 0x7021; //ID.

 wBuf[3] = 0; //CheckSum disable.

 wBuf[4] = 100; //TimeOut , the unit=0.1s

LinPAC Standard API Manual version 1.3.1 Page: 287

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 //wBuf[5] = i; //Not used if module ID is 7016/7021.

 //Channel No. (0 to 1) if module ID is 7022.

 //Channel No. (0 to 3) if module ID is 7024.

 wBuf[6] = 0; //String debug.

 fBuf[0] = 3.5; //Analog Value.

 wRetVal = AnalogOut(wBuf, fBuf, szSend, szReceive);

 if (wRetVal) //There was an error with the Analog Output on the I-7021.

 printf(“AO of 7021 Error !, Error Code=%d\n”, wRetVal);

 else

 printf(“AO of 7021 channel %d = %f \n”,i,fBuf[0]);

 //--- Analog Input ---- **** 7017 – AI ****

 j = 1;

 wBuf[0] = 3; //COM Port.

 wBuf[1] = 0x03; //Address.

 wBuf[2] = 0x7017; //ID.

 wBuf[3] = 0; //CheckSum disabled.

 wBuf[4] = 100; //TimeOut , the unit=0.1s

 wBuf[5] = j; //Channel of AI.

 wBuf[6] = 0; //Debug string.

 wRetVal = AnalogIn(wBuf, fBuf, szSend, szReceive);

 if (wRetVal) //There was an error with the Analog Input on the I-7017.

 printf(“AI of 7017 Error !, Error Code=%d\n”, wRetVal);

 else

 printf(“AI of 7017 channel %d = %f \n”,j,fBuf[0]);

 Close_Com(COM3);

 return 0;

}

LinPAC Standard API Manual version 1.3.1 Page: 288

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For this example, the programming and execution procedures are the same as those described in

the section 7.1.1. Figure 7.2.1-1 below illustrates the result of execution.

Figure 7.2.1-1. Execute the i7kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 289

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7.2.2. I-87K/97K Modules

If there are I-87KW/97K AIO modules inserted in the slots on the LinPAC, the ‘Open_Slot’ and

‘ChangeToSlot’ functions must be called before other functions for the I-87KW/97K modules are

used, and the ‘Close_Slot()’ function also needs to be called at the end of the program.

The i87kaio.c demo program illustrates how to control the AI/AO using an the I-87022W module

(2 AO channels) and an I-87017W module (8 AI channels). The I-87022W and I-87017W modules

are inserted into slots 2 and 3 of the LinPAC separately. The addresses and baudrate for both

modules in the LinPAC are 00 and 115200 bps separately, they were fixed by the library. The

result of executing this demo program is that AO channel 0 on the I-87022W module will be set to

output a voltage of 2.5V, and AI channel 1 on the I-87017W module will be set as the input

channel. The source code for this demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD wBuf[12];

DWORD wBuf7[12];

float fBuf[12];

int main()

{

 int i,j, wRetVal;

 DWORD temp;

 //Check Open_Slot

 wRetVal = Open_Slot(0);

 if (wRetVal > 0) {

 printf(“open Slot failed. \n”);

 return (-1);

 }

 //Check Open_Com1

 wRetVal = Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed. \n”);

 return (-1);

 }

LinPAC Standard API Manual version 1.3.1 Page: 290

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ChangeToSlot(2);

 //--- Analog output ---- **** 87022 – AO ****

 i=0;

 wBuf[0] = 1; //COM Port.

 wBuf[1] = 0x00; //Address.

 wBuf[2] = 0x87022; //ID.

 wBuf[3] = 0; //CheckSum disable.

 wBuf[4] = 100; //TimeOut , the unit=0.1s

 wBuf[5] = i; //Channel Number of AO.

 wBuf[6] = 0; //String debug.

 fBuf[0] = 2.5; //AO Value.

 wRetVal = AnalogOut_87k(wBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 // There was an error with the Analog Output on the I-87022W.

 printf(“AO of 87022 Error, Error Code=%d\n”, wRetVal);

 else

 printf(“AO of 87022 channel %d = %f \n”,i,fBuf[0]);

 ChangeToSlot(3);

 //--- Analog Input ---- **** 87017 – AI ****

 j=1;

 wBuf7[0] = 1; //COM Port

 wBuf7[1] = 0x00; //Address

 wBuf7[2] = 0x87017; //ID.

 wBuf7[3] = 0; //CheckSum disabled.

 wBuf7[4] = 100; //TimeOut , the unit=0.1s

 wBuf7[5] = j; //Channel Number of AI.

 wBuf7[6] = 0; //Debug string.

 wRetVal = AnalogIn_87k(wBuf7, fBuf, szSend, szReceive);

 if (wRetVal)

 //There was an error with the Analog Output on the I-87017W.

 printf(“AI of 87017 Error, Error Code=%d\n”, wRetVal);

 else

 printf(“AI of 87017 channel %d = %f \n”,j,fBuf[0]);

 Close_Com(COM1);

 Close_SlotAll();

 return 0;

}

LinPAC Standard API Manual version 1.3.1 Page: 291

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

7.2.3. I-8K/9K Modules

The i8kaio.c demo program illustrates how to control the AI/AO functions using the

I-8024W/9024 (4 AO channels) and I-8017HW/9017 (8 AI channels) modules, which are inserted in

slot 1 and slot 2 on the LinPAC separately. The address and baudrate in the LinPAC are 00 and

115200 bps separately, and they were fixed by library. The result of executing this demo is that

AO voltage channel 0 on the I-8024W/9024 module to will be set to output 5.5 V and AI channel 2

on the I-8017HW/9017 module to will be set as the input channel. The source code for this demo

program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int wRetVal;

 short jumper;

 int hAi, chAi, Arr_hAi[5];

 float fVal, Arr_fAi[5];

 //I-8024

 wRetVal = Open_Slot(1);

 if (wRetVal > 0) {

 printf(“open Slot failed. \n”);

 return (-1);

 }

 //I8024 Initial

 I8024_Initial(1);

 //I8024_AO Output

 I8024_VoltageOut(1,0,5.5);

 printf("Slot1: I8024 Set CH0= %f\n",fVal);

 Close_Slot(1);

LinPAC Standard API Manual version 1.3.1 Page: 292

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 //I-8017H

 wRetVal = Open_Slot(2);

 if (wRetVal > 0) {

 printf(“open Slot failed. \n”);

 return (-1);

 }

 //I8017H Initial

 I8017_Init(2);

 I8017_GetSingleEndJumper(slot,&jumper); //Read Jumper status

 //printf("Jumper mode: %d\n",jumper);

 // First Method：Get AI Value: I8017_ReadAI

 I8017_ReadAI(2,2,1,&fVal); //I8017_ReadAI(slot,channel,iGain,&fVal);

 printf("Slot2: I8017_ReadAI CH2= %f\n",fVal);

 Close_Slot(2);

 return 0;

}

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 7.2.3-1 below illustrates the result of the execution.

Figure 7.2.3-1. Execute the i8kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 293

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Appendix

A. Demo for I/O Modules in slots on an I-87K I/O
expansion unit

A1. DIO Control Demo for I-87K Modules

If the I-87KW DIO modules are inserted in the slots on an I-87KW I/O expansion unit, three parts

of the program illustrated in section 7.1.2 above will need to be modified as follows:

(1) The Open_Slot(), ChangeToSlot(), and Close_SlotAll() functions should be deleted.

(2) The address and baudrate of any I-87KW modules connected to the RS-485 network will need

to be configured using the DCON Utility, which can be downloaded from

http://www.icpdas.com/products/dcon/introduction.htm.

(3) The Open com1 (i.e., the internal serial port on the LinPAC) will need to be changed to open

com3 (i.e., the RS-485 port on the LinPAC).

The I-87054W is connected to an RS-485 network where the address is set to be 06 and the

baudrate is 9600 bps, which must be configured using the DCON Utility. The source code for the

i87kdio_87k.c demo program –is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int i, wRetVal;

 DWORD temp;

 //Check Open_Com3

 wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

http://www.icpdas.com/products/dcon/introduction.htm

LinPAC Standard API Manual version 1.3.1 Page: 294

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 if (wRetVal > 0) {

 printf(“open port failed. \n”);

 return (-1);

 }

 //--- digital output ---- **(DigitalOut_87k()**)

 dwBuf[0] = 3; //COM Port.

 dwBuf[1] = 06; //Address.

 dwBuf[2] = 0x87054; //ID.

 dwBuf[3] = 0; //CheckSum disable.

 dwBuf[4] = 100; //TimeOut, the unit=0.1s

 dwBuf[5] = 0xff; //Digital output.

 dwBuf[6] = 0; //String debug.

 wRetVal = DigitalOut_87k (dwBuf, fBuf, szSend, szReceive); //DO Output.

 printf(“DO Value= %u”, dwBuf[5]);

 //--- digital Input ---- **(DigitalIn_87k()**)

 dwBuf[0] = 3; //COM Port.

 dwBuf[1] = 06; //Address.

 dwBuf[2] = 0x87054; //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut , the unit=0.1s

 dwBuf[6] = 0; //Debug string.

 getch();

 DigitalIn_87k(dwBuf, fBuf, szSend, szReceive); //DI Input.

 printf(“DI= %u”,dwBuf*5+);

 //--- digital output ---- ** Close DO **

 dwBuf[0] = 3; //COM Port.

 dwBuf[1] = 06; //Address.

 dwBuf[2] = 0x87054; //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut , the unit=0.1s

 dwBuf[5] = 0x00; //Digital output.

 dwBuf[6] = 0; //Debug string.

 getch(); //Press any key to continue.

 wRetVal = DigitalOut_87k(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

 return 0;

}

LinPAC Standard API Manual version 1.3.1 Page: 295

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.1.1-1 below illustrates the result of the execution.

Figure 8.1.1-1. Execute the i87kdio.exe file

A2. AIO Control Demo for I-87K Modules

If the I-87KW/97K modules are inserted in slots on an I-87KW/97K I/O expansion unit, the three

parts of the program illustrated in Section 7.2.2 above will need to be modified, as follows:

(1) The Open_Slot(), ChangeToSlot(), and Close_SlotAll() functions should be deleted.

(2) The address and baudrate of any I-87KW/97K modules connected to the RS-485 network will

need to be configured using the DCON Utility, which can be downloaded from

http://www.icpdas.com/products/dcon/introduction.htm.

(3) The Open com1 (i.e,. the internal serial port on the LinPAC) will need to be changed to open

com3 (i.e., the RS-485 port on the LinPAC).

The I-87022W/97022 and I-87017W/97017 addresses are connected to the RS-485 network and

the addresses are set to 01 and 02 separately, with the baudrate for both modules set to 9600 bps,

which must be configured using the DCON Utility. The source code for the

i87kaio_87k.c/i97kaio_97k.c demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD wBuf[12];

http://www.icpdas.com/products/dcon/introduction.htm

LinPAC Standard API Manual version 1.3.1 Page: 296

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

DWORD wBuf7[12];

float fBuf[12];

/* --- */

int main()

{

 int i,j, wRetVal;

 DWORD temp;

 //Check Open_Com3

 wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed. \n”);

 return (-1);

 }

 //--- Analog output ---- **** 87022 – AO ****

 i=0;

 wBuf[0] = 3; //COM Port.

 wBuf[1] = 0x01; //Address.

 wBuf[2] = 0x87022; //ID.

 wBuf[3] = 0; //CheckSum disabled.

 wBuf[4] = 100; //TimeOut , the unit=0.1s

 wBuf[5] = i; //Channel Number of AO.

 wBuf[6] = 0; //Debug string.

 fBuf[0] = 2.5; //AO Value.

 wRetVal = AnalogOut_87k(wBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 printf(“AO of 87022 Error , Error Code=%d\n”, wRetVal);

 else

 printf(“AO of 87022 channel %d = %f \n”,i,fBuf[0]);

 //--- Analog Input ---- **** 87017 – AI ****

 j=1;

 wBuf7[0] = 3; //COM Port.

 wBuf7[1] = 0x02; //Address.

 wBuf7[2] = 0x87017; //ID.

 wBuf7[3] = 0; //CheckSum disabled.

 wBuf7[4] = 100; //TimeOut , the unit=0.1s

 wBuf7[5] = j; //Channel Number of AI.

 wBuf7[6] = 0; //Debug string.

LinPAC Standard API Manual version 1.3.1 Page: 297

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 wRetVal = AnalogIn_87k(wBuf7, fBuf, szSend, szReceive);

 if (wRetVal)

 printf(“AI of 87017 Error !, Error Code=%d\n”, wRetVal);

 else

 printf(“AI of 87017 channel %d = %f \n”,j,fBuf[0]);

 Close_Com(COM3);

 return 0;

}

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.1.2-1 below illustrates the result of the execution.

Figure 8.1.2-1. Execute the i87kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 298

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

B. Demo for I/O Modules in slots on an I-8000 Controller

B1. DIO Control Demo for I-87K Modules

If the I-87KW DIO modules are inserted the slots on an I-8000 controller, the I-87KW modules will

be regarded as I-8KW modules. For more details, refer to the description of how to perform DI/DO

control on I-8KW modules provided in Appendix B3.

B2. AIO Control Demo for I-87K Modules

If the I-87KW AIO modules are inserted in slots on an I-8000 controller, the modules will be

regarded as I-8KW modules. For more details, refer to the description of how to perform AI/AO

control on I-8KW modules provided in Appendix B4.

B3. DIO Control Demo for I-8K Modules

The i8kdio_8k.c demo program illustrates how to control the DI/DO using the I-8055W module (8

DO channels and 8 DI channels) on an I-8000 controller. Configure the hardware by following the

procedure described below:

(1) Insert the I-8055W module into slot 0 on the I-8000 controller.

(2) Connect the COM3 on the LinPAC to the COM1 on the I-8000 controller using an RS-232 cable.

The address of the I-8000 controller is 01 and the baudrate is 115200 bps, which must be

configured using the DCON Utility. The result of executing this demo program is that DO channels

0 to 7 on the I-8055W module to will be set to the output channel, and DI channel 0 on the

I-8055W module will be set as input channel. The source code for this demo program is as follows:

LinPAC Standard API Manual version 1.3.1 Page: 299

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int i, wRetVal;

 DWORD temp;

 //Check Open_Com3

 wRetVal = Open_Com(COM3, 115200, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed. \n”);

 return (-1);

 }

 //--- digital output ---- **(DigitalOut_8K()**)

 dwBuf[0] = 3; //COM Port.

 dwBuf[1] = 01; //Address.

 dwBuf[2] = 0x8055; //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut , 1 the unit=0.1s

 dwBuf[5] = 0xff; //Digital output.

 dwBuf[6] = 0; //Debug string.

 dwBuf[7] = 1; //Slot number.

 wRetVal = DigitalOut_8K(dwBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 // There was an error with the Analog Output on the I-8055

 printf(“DO of I-8055 Error , Error Code=%d\n”, wRetVal);

 else

 printf(“DO of I-8055 = 0x%x” ,dwBuf[5]);

 //--- Digital Input ---- **(DigitalIn_8K()**)

 dwBuf[0] = 3; //COM Port.

 dwBuf[1] = 01; //Address.

 dwBuf[2] = 0x8055; //ID.

 dwBuf[3] = 0; //CheckSum

 dwBuf[4] = 100; //TimeOut , the unit=0.1s

LinPAC Standard API Manual version 1.3.1 Page: 300

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 dwBuf[6] = 0; //Debug string.

 dwBuf[7] = 1; //Slot number.

 getch();

 DigitalIn_8K(dwBuf, fBuf, szSend, szReceive);

 printf(“DI = %u”,dwBuf*5+);

 //--- Digital output ---- ** Close DO **

 dwBuf[0] = 3; //COM Port.

 dwBuf[1] = 01; //Address.

 dwBuf[2] = 0x8055; //ID.

 dwBuf[3] = 0; //CheckSum disabled.

 dwBuf[4] = 100; //TimeOut , the unit=0.1s

 dwBuf[5] = 0x00; //Digital output.

 dwBuf[6] = 0; //Debug string.

 dwBuf[7] = 1; //Slot number.

getch() //Push any key to continue.

 wRetVal = DigitalOut_8K(dwBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

 return 0;

}

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.2.3-1 below illustrates the result of the execution.

Figure 8.2.3-1. Execute the i8kdio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 301

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

B4. AIO Control Demo for I-8K Modules

The i8kaio_8k.c demo program illustrates how to control the AI/AO functions using the I-8024W

(4 AO channels) and I-8017HW (8 AI channels) modules, which are inserted into slot 0 and slot 1

on the I-8000 controller. Configure the hardware by following the procedure described below:

(1) Insert the I-8024W and I-8017HW modules in slot 0 and slot 1 on the I-8000 controller

respectively.

(2) Install 8k232.exe or R232_300.exe to flash memory of I-8000 controller as firmware.

(3) Connect COM3 on the LinPAC to COM1 on the I-8000 controller using an RS-232 cable.

The address of the I-8000 controller is 01 and baudrate is 115200 bps, which must be configured

using the DCON Utility. The result of executing this demo program is that AO voltage channel 0 on

the I-8024W module to will be set to output 3.5 V, and AI channel 2 on the I-8017HW module will

be set as the input channel. The source code for this demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD wBuf[12];

float fBuf[12];

int main()

{

 int i=0, j=2, wRetVal;

 DWORD temp;

 wRetVal = Open_Com(COM3, 115200, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf(“open port failed. \n”);

 return (-1);

 }

 //--- Analog output ---- **** 8024 – AO ****

 wBuf[0] = 3; //COM Port.

 wBuf[1] = 0x01; //Address.

 wBuf[2] = 0x8024; //ID.

 wBuf[3] = 0; //CheckSum disabled.

 wBuf[4] = 100; //TimeOut , the unit=0.1s

 wBuf[5] = i; //Channel No. of AO.

LinPAC Standard API Manual version 1.3.1 Page: 302

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 wBuf[6] = 0; //Debug string.

 wBuf[7] = 0; //Slot Number.

 fBuf[0] = 3.5;

 wRetVal = AnalogOut_8K(wBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 printf(“AO of 8024 Error, Error Code=%d\n”, wRetVal);

 else

 printf(“AO of 8024 channel %d = %f \n”,i,fBuf[0]);

 //--- Analog Input ---- **** 8017H – AI ****

 wBuf[0] = 3; //COM Port.

 wBuf[1] = 0x01; //Address.

 wBuf[2] = 0x8017; //ID.

 wBuf[3] = 0; //CheckSum disabled.

 wBuf[4] = 100; //TimeOut , the unit=0.1s

 wBuf[5] = j; //Channel of AI.

 wBuf[6] = 0; //Debug string.

 wBuf[7] = 1; //Slot Number.

 wRetVal = AnalogIn_8K(wBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 printf(“AI of 8017H Error, Error Code=%d\n”, wRetVal);

 else

 printf(“AI of 8017H channel %d = %f \n”,j,fBuf[0]);

 Close_Com(COM3);

 return 0;

}

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.2.4-1 below illustrates the result of the execution.

Figure 8.2.4-1. Execute the i8kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 303

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

C. The old version of the API function

The table below lists the old version of the API function for AIO modules via a parallel port that

are supported by each LinPAC. For more details, please refer to the corresponding chapters.

C1. I-8017 API Function

 I8017_Init

Description:

This function is used to initialize the I-8017HW modules (Analog input module) into the specified

slot. Users must execute this function before trying to use other functions within the I-8017HW

modules.

Syntax:

[C]

 int I8017_Init(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

Return Value:

 The version of library.

Examples:

 int slot=1,ver;

 ver=I8017_Init(slot);

 // The I-8017HW is inserted in slot 1 of LinPAC and initializes the module.

LinPAC Standard API Manual version 1.3.1 Page: 304

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_SetLed

Description:

Turns the I-8017HW modules LED’s on/off. They can be used to act as an alarm.

Syntax:

[C]

 void I8017_SetLed(int slot,unsigned int led)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 led: [Input] Range from 0 to 0xffff

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

Return Value:

 None

Examples:

 int slot=1; // slot=1 or 2.

 unsigned int led=0x0001;

 I8017_SetLed(slot, led);

 // There will be a LED light on channel 0 of the I-8017HW card

 // which is inserted in slot 1 (or 2) on the LinPAC.

LinPAC Standard API Manual version 1.3.1 Page: 305

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_SetChannelGainMode

Description:

This function is used to configure the range and mode of the analog input channel for the

I-8017HW modules in the specified slot before using the ADC (analog to digital converter).

Syntax:

[C]

 void I8017_SetChannelGainMode (int slot,int ch,int gain,int mode)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

 ch: [Input] Differential mode  Range 0 to 7 (I-8017H: Range 0 to 7)

 Others: Single-ended mode  Range 0 to 15

 gain: [Input] input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20mA

 mode: [Input] 0: normal mode (polling)

Return Value:

 None

Examples:

 int slot=1, ch=0, gain=0;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 // The I-8017HW card is inserted in slot 1 or 2 of LinPAC, and the range of the data

 // value from channel 0 for I-8017H will be -10 to +10V.

LinPAC Standard API Manual version 1.3.1 Page: 306

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_GetFirmwareVersion

Description:

This function is used to get the lattice version of I-8017HW at specific slot.

Syntax:

[C]

 int I8017_GetFirmwareVersion(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted (Range: 1 to 8)

 *version [Output] version

Return Value:

>0: Version No.

<=0: Error.

Examples:

 int slot=1, version;

 version = I8017_ GetFirmwareVersion(slot);

 printf(“I-8017 at Slot%d, firmware version= %d",slot, version);

 // The I-8017HW card is inserted in slot 1 of LinPAC and initializes the module.

LinPAC Standard API Manual version 1.3.1 Page: 307

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_GetSingleEndJumper

Description:

This function is used to get the mode of input channels, single-ended or differential.

Syntax:

[C]

 void I8017_GetSingleEndJumper(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted (Range: 1 to 8)

Return Value:

1: Single-Ended mode.

0: Differential mode.

Examples:

 int slot=1;

 I8017_Init(slot);

 printf(“mode=%d”, I8017_GetSingleEndJumper(slot));

LinPAC Standard API Manual version 1.3.1 Page: 308

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Figure 8.3.1-1. I-8017H Flow Diagram

In order to provide convenience for the user, ICP DAS released a new version of the SDK for Linux

PAC at 2018, the new version API- I8017_ReadAI() and I8017_ReadAIHex() functions have

replaced following:

 I8017_GetCurAdChannel_Hex (int slot)

 I8017_AD_POLLING(int slot, int ch, int gain, unsigned int datacount, int *DataPtr)

 I8017_HEX_TO_FLOAT_Cal(int HexValue, int slot, int gain)

 I8017_ARRAY_HEX_TO_FLOAT_cal(int *HexValue, float *FloatValue, int slot, int gain, int len)

 I8017_Hex_Cal(int data)

 I8017_Hex_Cal_Slot_Gain(int slot, int gain, int data)

 I8017_CalHex_TO_FLOAT(int HexValue, int gain)

 I8017_ARRAY_CalHex_TO_FLOAT(int *HexValue, float *FloatValue, int gain, int len)

 I8017_GetCurAdChannel_Hex_Cal(int slot)

 I8017_AD_POLLING_Cal(int slot, int ch, int gain, unsigned int datacount, int *DataPtr)

 I8017_GetCurAdChannel_Float_Cal(int slot)

For more details about new version API, please refer to the following website link:

https://www.icpdas.com/en/download/show.php?num=1869&model=I-8017HW-G

https://www.icpdas.com/en/download/show.php?num=1869&model=I-8017HW-G

LinPAC Standard API Manual version 1.3.1 Page: 309

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function of [1]

 I8017_GetCurAdChannel_Hex

Description:

Obtains the non-calibrated analog input value in the Hex format from the analog input I-8017HW

modules.

Syntax:

[C]

 int I8017_GetCurAdChannel_Hex (int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 The analog input value in Hex format.

Examples:

 int slot=1,ch=0,gain=4;

 int data;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 data= I8017_GetCurAdChannel_Hex(slot);

 // The I-8017HW is inserted in slot 1 of LinPAC and the range of the data

 // value from channel 0 in I-8017H is +/-20Ma.

LinPAC Standard API Manual version 1.3.1 Page: 310

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_AD_POLLING

Description:

This function is used to get the analog input non-calibrated hex values of the specified channel

from an analog input module and can convert it to the value according to the slot configuration,

the gain and the data number.

Syntax:

[C]

 int I8017_AD_POLLING(int slot,int ch,int gain,unsigned int datacount,int *DataPtr)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 ch: [Input] I-8017H: Range 0 to 7

 Others: Single-ended mode  Range 0 to 15

 Differential mode  Range 0 to 7

 gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

 datacount: [Input] Range from 1 to 8192, total ADCs number

 *DataPtr: [Output] The starting address of data array[] and the array size

 must be equal to or bigger than the datacount

Return Value:

0: Indicates success.

Not 0: Indicates failure.

LinPAC Standard API Manual version 1.3.1 Page: 311

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 int slot=1, ch=0, gain=0, data[10];

 unsigned int datacount=10;

 I8017_AD_POLLING(slot, ch, gain, datacount, data);

 // You gain ten not-calibrated hex values via channel 0 in the I-8017H module.

Remark:

(1) You can use ARRAY_HEX_TO_FLOAT_Cal() or HEX_TO_FLOAT_Cal() to calibrate the data

and convert to float value.

LinPAC Standard API Manual version 1.3.1 Page: 312

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function of [2]

 I8017_HEX_TO_FLOAT_Cal

Description:

This function is used to convert the data from not-calibrated hex to calibrated float values based

on the configuration of the slot, gain (Voltage or current).

Syntax:

[C]

 float I8017_HEX_TO_FLOAT_Cal(int HexValue, int slot, int gain)

Parameter:

 HexValue: [Input] Specified not-calibrated HexValue before converting

slot: [Input] Specified slot of the LinPAC system

gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

Return Value:

 The Calibrated Float Value.

Examples:

 int slot=1, ch=0, gain=0, hdata;

 float fdata;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 hdata=I8017_I8017_GetCurAdChannel_Hex(slot);

 fdata=I8017_HEX_TO_FLOAT_Cal(hdata, slot, gain);

 // You can convert not-calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 313

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_ARRAY_HEX_TO_FLOAT_Cal

Description:

This function is used to convert the data from non-calibrated hex values to calibrated float values

in the array mode based on the slot’s configuration (Voltage or current).

Syntax:

[C]

 void I8017_ARRAY_HEX_TO_FLOAT_cal(int *HexValue,float *FloatValue,int slot,

 int gain,int len)

Parameter:

 *HexValue: [Input] Data array in not-calibrated Hex type before converting

 *FloatValue: [Output] Converted data array in calibrated float type

slot: [Input] Specifies the slot where the I/O module is inserted

gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

len: [input] ADC data length

Return Value:

 None

Examples:

 int slot=1, ch=0, gain=0, datacount=10, hdata[10];

 float fdata[10];

 I8017_SetChannelGainMode(slot, ch, gain,0);

 I8017_AD_POLLING(slot, ch, gain, datacount, data);

 I8017_ARRAY_HEX_TO_FLOAT_Cal(data, fdata, slot, gain, len);

 // You can convert ten not-calibrated Hex values to ten calibrated Float values.

LinPAC Standard API Manual version 1.3.1 Page: 314

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 HEX_TO_FLOAT_Cal

Description:

This function is used to convert the data from not-calibrated hex to calibrated float values based

on the configuration of the slot, gain (Voltage or current).

Syntax:

[C]

 float HEX_TO_FLOAT_Cal(int HexValue,int slot,int gain)

Parameter:

 HexValue: [Input] Specified not-calibrated HexValue before converting

 slot: [Input] Specified slot of the LinPAC Series system

 gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20mA

Return Value:

 The Calibrated Float Value.

Examples:

 int slot=2, ch=0, gain=0, hdata;

 float fdata;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 hdata=I8017_GetCurAdChannel_Hex(slot);

 fdata=HEX_TO_FLOAT_Cal(hdata, slot, gain);

 // You can convert not-calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 315

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ARRAY_HEX_TO_FLOAT_Cal

Description:

This function is used to convert the data from non-calibrated hex values to calibrated float values

in the array mode based on the slot’s configuration (Voltage or current).

Syntax:

[C]

 void ARRAY_HEX_TO_FLOAT_cal(int *HexValue,float *FloatValue,int slot,int gain,int len)

Parameter:

 *HexValue: [Input] Data array in not-calibrated Hex type before converting

 *FloatValue: [Output] Converted data array in calibrated float type

 slot: [Input] Specified slot of the LinPAC Series system

 gain: [Input] Input range:

 len: [input] ADC data length

Return Value:

 None

Examples:

 int slot=2, ch=0, gain=0, datacount=10, hdata[10];

 float fdata[10];

 I8017_SetChannelGainMode(slot, ch, gain,0);

 I8017_AD_POLLING(slot, ch, gain, datacount, data);

 ARRAY_HEX_TO_FLOAT_Cal(data, fdata, slot, gain, len);

 // You can convert ten not-calibrated Hex values to ten calibrated Float values.

LinPAC Standard API Manual version 1.3.1 Page: 316

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function of [3]

 I8017_Hex_Cal

Description:

This function is used to convert the data from non-calibrated hex values to calibrated hex values

(Voltage or current). Please refer to Figure 8.3.1-1.

Syntax:

[C]

 int I8017_Hex_Cal(int data)

Parameter:

 data : [Input] Specified not-calibrated hex value

Return Value:

 The Calibrated Hex Value.

Examples:

 int slot=1, ch=0, gain=0, hdata;

 int hdata_cal;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 hdata=I8017_GetCurAdChannel_Hex(slot);

 hdata_cal=I8017_Hex_Cal(hdata);

 // You can convert not-calibrated Hex Value to calibrated Hex Value.

LinPAC Standard API Manual version 1.3.1 Page: 317

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_Hex_Cal_Slot_Gain

Description:

This function is used to convert the data from non-calibrated hex values to calibrated hex values

based on the configuration of the slot, gain (Voltage or current).

Syntax:

[C]

 int I8017_Hex_Cal_Slot_Gain(int slot,int gain,int data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

 data: [Input] Specified not-calibrated hex value

Return Value:

 The Calibrated Hex Value.

Examples:

 int slot=1, ch=0, gain=0, hdata;

 int hdata_cal;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 hdata=I8017_GetCurAdChannel_Hex(slot);

 hdata_cal=I8017_Hex_Cal_Slot_Gain(slot, gain, hdata);

 // You can convert not-calibrated Hex Value to calibrated Hex Value according to the

 // gain of slot you choose.

LinPAC Standard API Manual version 1.3.1 Page: 318

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function of [4]

 I8017_CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values

based on the configuration of the gain (Voltage or current).

Syntax:

[C]

 float I8017_CalHex_TO_FLOAT(int HexValue,int gain)

Parameter:

 HexValue: [Input] Specified not-calibrated HexValue before converting

gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

Return Value:

 The Calibrated Float Value.

Examples:

 int slot=1, ch=0, gain=0, hdata, hdata_cal;

 float fdata;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 hdata=I8017_GetCurAdChannel_Hex(slot);

 hdata_cal=I8017_HEX_Cal(hdata);

 fdata=I8017_CalHex_TO_FLOAT(hdata_cal, gain);

 // You can convert calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 319

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_ARRAY_CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values in

the array mode based on the configuration of the gain (Voltage or current).

Syntax:

[C]

 void I8017_ARRAY_CalHex_TO_FLOAT(int *HexValue,float *FloatValue,int gain,int len)

Parameter:

 *HexValue: [Input] Data array in calibrated Hex format

 *FloatValue: [Output] Converted data array in calibrated float format

gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

len: [input] ADC data length

Return Value:

 The Calibrated Float Value.

Examples:

 int slot=1, ch=0, gain=0, hdata_cal[10];

 float fdata[10];

 fdata=I8017_ARRAY_CalHex_TO_FLOAT(hdata_cal, fdata, gain, len);

 // You can convert ten calibrated Hex Values to ten calibrated Float Values.

LinPAC Standard API Manual version 1.3.1 Page: 320

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values

based on the configuration of the gain (Voltage or current).

Syntax:

[C]

 float CalHex_TO_FLOAT(int HexValue,int gain)

Parameter:

 HexValue: [Input] Specified not-calibrated HexValue before converting

 gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20mA

Return Value:

 The Calibrated Float Value.

Examples:

 int slot=1, ch=0, gain=0, hdata, hdata_cal;

 float fdata;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 hdata=I8017_GetCurAdChannel_Hex(slot);

 hdata_cal=I8017_HEX_Cal(hdata);

 fdata=CalHex_TO_FLOAT(hdata_cal, gain);

 // You can convert calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 321

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 ARRAY_CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values in

the array mode based on the configuration of the gain (Voltage or current).

Syntax:

[C]

 void ARRAY_CalHex_TO_FLOAT(int *HexValue,float *FloatValue,int gain,int len)

Parameter:

 *HexValue: [Input] Data array in calibrated Hex format

 *FloatValue: [Output] Converted data array in calibrated float format

 gain: [Input] Input range:

 len: [input] ADC data length

Return Value:

 The Calibrated Float Value.

Examples:

 int slot=1, ch=0, gain=0, hdata_cal[10];

 float fdata[10];

 fdata=ARRAY_CalHex_TO_FLOAT(hdata_cal, fdata, gain, len);

 // You can convert ten calibrated Hex Values to ten calibrated Float Values.

LinPAC Standard API Manual version 1.3.1 Page: 322

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function of [1]+[2]

 I8017_GetCurAdChannel_Float_Cal

Description:

Obtains the calibrated analog input value in the Float format directly from the analog input

modules. This function is a combination of the ‘I8017_GetCurAdChannel_Hex’ and the

‘Hex_TO_FLOAT_Cal’ function.

Syntax:

[C]

 int I8017_GetCurAdChannel_Float_Cal(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 The analog input value in Calibrated Float format.

Examples:

 int slot=1,ch=0,gain=0;

 float data;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 data=I8017_GetCurAdChannel_Float_Cal(slot);

 // The I-8017HW is inserted in slot 1 of LinPAC and the range of the

 // data value from channel 0 in I-8017H is -10V to +10V.

LinPAC Standard API Manual version 1.3.1 Page: 323

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Function of [1]+[3]

 I8017_GetCurAdChannel_Hex_Cal

Description:

Obtain the calibrated analog input values in the Hex format directly from the analog input

modules. This function is a combination of the ‘I8017_GetCurAdChannel_Hex’ and the

‘I8017_Hex_Cal’ function.

Syntax:

[C]

 int I8017_GetCurAdChannel_Hex_Cal(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

 The analog input value in Calibrated Hex format.

Examples:

 int slot=1,ch=0,gain=0, data;

 I8017_SetChannelGainMode(slot, ch, gain,0);

 data=I8017_GetCurAdChannel_Hex_Cal(slot);

 // The I-8017H card is inserted in slot 1 of LinPAC and the range of the

 // data value from channel 0 in I-8017H is 0x0000 to 0x3fff.

LinPAC Standard API Manual version 1.3.1 Page: 324

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8017_AD_POLLING_Cal

Description:

This function is used to get the analog input calibrated hex values in the array mode from an

analog input module and can convert according to the slot configuration value, the gain and the

data number.

Syntax:

[C]

 int I8017_AD_POLLING_Cal(int slot,int ch,int gain,unsigned int datacount,int *DataPtr)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

 ch: [Input] I-8017H: Range 0 to 7

 Others: Single-ended mode  Range 0 to 15

 Differential mode  Range 0 to 7

 gain: [Input] Input range:

 0: +/- 10.0V

 1: +/- 5.0V

 2: +/- 2.5V

 3: +/- 1.25V

 4: +/- 20Ma

 datacount: [Input] Range from 1 to 8192, total ADCs number

 *DataPtr: [Output] The starting address of data array[] and the array size

must be equal to or bigger than the datacount.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 325

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

Examples:

 int slot=1, ch=0, gain=0, data[10];

 unsigned int datacount=10;

 I8017_AD_POLLING_Cal(slot, ch, gain, datacount, data);

 // You gain ten calibrated hex values via channel 0 in the I-8017HW module.

LinPAC Standard API Manual version 1.3.1 Page: 326

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

C2. I-8024 API Function

 I8024_Initial

Description:

This function is used to initialize the I-8024W module in the specified slot. You must implement

this function before you try to use the other I-8024 functions.

Syntax:

[C]

 void I8024_Initial(int slot)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

Return Value:

 None

Examples:

 int slot=1;

 I8024_Initial(slot);

 // The I-8024W is inserted in slot 1 of LinPAC and initializes the I-8024W module.

LinPAC Standard API Manual version 1.3.1 Page: 327

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8024_VoltageOut

Description:

This function is used to send the voltage float value to the I-8024W module with the specified

channel and slot in the LinPAC system.

Syntax:

[C]

 void I8024_VoltageOut(int slot,int ch,float data)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

 ch: [Input] Output channel (Range: 0 to 3)

 data: [Input] Output data with engineering unit (Voltage Output: -10 to +10)

Return Value:

 None

Examples:

 int slot=1, ch=0;

 float data=3.0f;

 I8024_VoltageOut(slot, ch, data);

 // The I-8024W module output the 3.0V voltage from the channel 0.

LinPAC Standard API Manual version 1.3.1 Page: 328

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8024_CurrentOut

Description:

This function is used to initialize the I-8024W module in the specified slot for current output.

Users must call this function before trying to use the other I-8024W functions for current output.

Syntax:

[C]

 void I8024_CurrentOut(int slot, int ch, float cdata)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

 ch: [Input] Output channel (Range: 0 to 3)

 cdata: [Input] Output data with engineering unit (Current Output: 0 to 20 mA)

Return Value:

 None

Examples:

 int slot=1, ch=0;

 float cdata=10.0f;

 I8024_CurrentOut(slot, ch, data);

 // Output the 10.0Ma current from the channel 0 of I-8024W module.

LinPAC Standard API Manual version 1.3.1 Page: 329

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8024_VoltageHexOut

Description:

This function is used to send the voltage value in the Hex format to the specified channel in the

I-8024W module, which is inserted in the slot in the LinPAC system.

Syntax:

[C]

 void I8024_VoltageHexOut(int slot,int ch,int hdata)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

 ch: [Input] Output channel (Range: 0 to 3)

 hdata: [Input] Output data with hexadecimal

 (data range: 0h to 3FFFh  Voltage Output: -10 to 10V)

Return Value:

 None

Examples:

 int slot=1, ch=0; data=0x3000;

 I8024_VoltageHexOut(slot, ch, data);

 // The I-8024W module output the 5.0V voltage from the channel 0.

LinPAC Standard API Manual version 1.3.1 Page: 330

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

 I8024_CurrentHexOut

Description:

This function is used to send the current value in the Hex format to the specified channel in the

analog output module I-8024W, which is plugged into the slot in the LinPAC system.

Syntax:

[C]

 void I8024_CurrentHexOut(int slot,int ch,int hdata)

Parameter:

 slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x LP-8x4x LP-8x8x LX-Series

Slot range 1 ~ 8 1 ~ 8 1 ~ 7 2 ~ 8

 ch: [Input] Output channel (Range: 0 to 3)

 hdata: [Input] Output data with hexadecimal

 (data range: 0h to 3FFFh  Current Output: 0 to +20mA)

Return Value:

 None

Examples:

 int slot=1, ch=0; data=0x2000;

 I8024_CurrentHexOut(slot, ch, data);

 // Output the 10.0Ma current from the channel 0 of I-8024W module.

LinPAC Standard API Manual version 1.3.1 Page: 331

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com

D. Revision History

This chapter provides revision history information to this document.

The table below shows the revision history.

Revision Date Description

V1.0.0 Apr 2019 Initial issue

V1.1.0 May 2021 Update SDK download link and wdt function

V1.1.1 October 2021 Update WDT function

V1.2.0 December 2021
1. SDK for Linux platform is running for 32 bit OS

2. Modify unit for wTimeout and *wT parameter

V1.2.1 December 2022 Add two API function for Low Pass Filter Module of I-9000

