LinPAC
Standard API User Manual

V1.3.1
June 2023



Warranty

All products manufactured by ICP DAS Inc. are warranted against defective
materials for a period of one year from the date of delivery to the original

purchaser.

Warning

ICP DAS Inc. assume no liability for any damage consequent to the use of this
product. ICP DAS Inc. reserves the right to change this manual at any time
without notice. The information furnished by ICP DAS Inc. is believed to be
accurate and reliable. However, no responsibility is assumed by ICP DAS Co., Ltd.
for its use, nor for any infringements of patents or other rights of third parties

resulting from its use.

Copyright

Copyright @ 2019 by ICP DAS Co., Ltd. All rights are reserved.

Trademark

Names are used for identification purposes only and maybe registered

trademarks of their respective companies.

Contact US

If you have any problem, please feel free to contact us.

You can count on us for quick response.

Email: service@icpdas.com

LinPAC Standard API Manual version 1.3.1 Page: 2

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Contents

1. Getting Started ...ttt 6
1.1. Introduction the LINPAC SDK ........eiiiiiiiiieeiee ettt ettt et st 6
1.2.2. INtroduction £O CYBWIN .ccccueiiii ettt e st e e s s e e s s sbae e e s sareeeeenns 6
1.1.2 Introduction to Cross-Compilation .........cccuuviivieeiii e 7
1.1.3. Download the LINPAC SDK .....c.eeiiiiiiiiiieiee et s 8
1.2. The Architecture of LIBISK.A in the LINUX PAC.......ccccuii it 9
1.3. Setting up the Development ENVIrONMENt........ccooviiiiiiiniiiie e 10
1.3.1. LINPAC PXA270 SEIIES ..cuteeueieieeeiieeiee sttt e st et sttt st st e siee e b e sanesneesaneeneesnees 10
1.3.2. LINPAC AMB35X SEIIES ..eeiiiiiiiiiiiiiee ittt 20
1.3.3. LINPAC X86/E38XX/IMX8MIM SEIIES.....cccuerueereieieeienieeieetesteeiesaeseeenseseesseensesneenes 29
2. System Information FUNCLIONS ................c.cooovoiiiiicccccce e, 30
2 T O T T=T o T o P URSRR 32
B @ T 1Y =) Lo ) U SPSUR 33
D20 TR 0 oY1 o ) (o A | PR 34
D S o =Y o 7 | PSR 35
D T @ o - 1o T = 03] Lo | PSR 36
B T 1= d Y Lo Yo [T L= Y/ o TP SPSUR 37
B Y o T o o 1= TS 38
D < T (o T ol [0 1Y < TP PPUR 40
PR B [ Y= Lo Uor= o [ 42
2.00. REAA_SN ..ttt ettt e b e st b e e i bt e bt e s b e e be e e b e e bt e e beenaeeeneeeneeereen 43
000 5 R © o = o J o o [ 44
D 1 @ [ Y ST o o PRSPPI 46
2.13. Send_RECEIVE_CMA ...uuiiiiieeii ettt e e e e e e et e e e e e e e e e s b eaeaeeeeesseennsraaeeeeaseenanns 47
2 Y <Y o Vo o oo U PPRUR 50
D T 2 =Tl <11V <T@ 4 o o EO RO PPPR 52
D Y =T o Lo I = 11 T 1 VRO PP PPPPR 54
2.17. RECEIVE_BINAIY ooiiieiiiieieieeeeeeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eeeaeeeeees 56
2.18. GEtBACKPIANEID ..ottt s 58
P RS B CT=Y Y QY= €] o o PR 59
2.20. GEESIOTCOUNT ...ttt sttt s e e r e s n e ne e saneesneeeneesneeeneens 60
2.21. GetNaMEOFMOUIE ....ccoeiiiii e e s 61
2.22. GetNamMeOTMOAUIE_OK ... e e e s e e e e e e s e nebea e e e e e e eeeans 62
LinPAC Standard API Manual version 1.3.1 Page: 3

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.23. GEtNAMEOTMOAUIE_XW...iiiiiiiiiiiiiiiieeeeiitee et et e e s st e e e s e e e s saraee e snabaeeessasaeeesnanens 63

2.24. GEtDIPSWITCR ..eiiiiiiiiiiiee e s 64
2,25, SEELED ..ttt sttt enn e s re e nae e e reenneenneen 65
2.26. SELLED _SINGIE ..ttt ettt ettt sttt et et e st e e b e ateereen 68
P B G114 2o =] oY | D I PP 69
2.28. rotary_SWItCN_FAM .....vvieieii it e e e e e e e s s e e e e e e e s e nnerereeeeeeeennn 71
2.29. REAA_SRAM ...ttt st ettt s n e e b st e n e s n e nan e e reenneenreen 73
2.30. WIILE_SRAM ...ttt ettt et et b e et e b e e st e e bt e e abeesaeesabeesabeebeesneeebeen 74
2,31, ENABIEWWDT .ttt ettt ettt et st e b e et e b e e st e e be e e abe e st e sabeesateenbeesneeeneen 75
2.32. DiSADIEWDT ...t 76
2.33. WatChDOGSWEVEN ...ttt e e e e e e e e e e e e s s are e e e e e e e seeansraaeeeeaseennnns 77
2.34. ClearWDTSWEVEN .......eiiiiieeiiee ettt et ettt ettt s e e s bt e e s bt e e s bt e e st e e saseeesabeeesnneeesaneesnnne 78
2.35. REfTESNWDT ...ttt ettt ettt e et e st e e st e e sab e e s sabee e saneesnneesanee 79
3. Digital Input/OUtPUt FUNCHIONS ...........oooviiiiececeeeeeeeeeee e 80
3.1. For 1-8000/9000 modules via parallel POrt.........cceeecieeeiieeeiieeecee e e e 84
S 700 I 0 1 - SRR PROPP 84
70 2 5 1 e PSPPSR PRUPRP 85
700 I T D16 O PSR P S U PSP PRROPPPR 86
314 REAAD .« et b e he e et e s e e n e nae e 87
0t T 0 L PSPV PR PP 88

S 70t S L PP YRR RPN 89
70 B A 0 ] 7 PP U USSP PO UPTRPRROPPRPRR 90

3. 1.8 DIO_DO_8...oieiieieeiieett ettt ettt ettt sttt et she e bt e he e et e sae e e ne e e ne e e beenaeeeane 91
3.1.9 DIO_DO_16 .ttt 92

70 O 0 1 I L - TP PR ORI 93

S 700 0 0 1 1 1 T PSP U PRSP PRROPPPPR 94
3.1.12 DO_8_RB, DO_16_RB, DO_32_RB, DIO_DO_8 RB, DIO_DO_16_RB..................... 95
3.1.13D0O_8_BW, DO_16_BW, DO_32_BW, DIO_DO_8_BW, DIO_DO_16_BW .......... 96
3.1.14 DI_8_BW ~ DI_16_BW ~ DI_32_ BW ..ottoeeeiieeeeieenieeereereeereesieeeneeseesneeseeee 98
3.1.15 UDIO_Writ@CONTFIG_ 16 ...ueeiiuiieiieeieeiiee ettt ettt ettt st n e sae e 99
3.1.16 UDIO_REAACONTIG_L6 ..ccueeiieieiieeiieeieeniee ettt ettt ettt st ne e nee 100
3.1.17 UDIO_DOTB ..ottt nee 101
3. 1. 18 UDIO_DILB ettt esane e esnneenee s 102
31,19 REAUDI_LPF ...ttt st ettt e b e st e st e e b e e e e e nee 103
3.1.20 WIHEEDI_LPF ...ttt sttt ettt e st e e b e saneeneens 104

3.2. For |1-7000/1-8000/1-9000/1-87000 modules via serial port .........ccccceeveveevereeivereereeeeneens 105

LinPAC Standard API Manual version 1.3.1 Page: 4

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.2.0. 1-7000 SEFIES MOAUIES ..cceunieeieeee ettt e ettt ee s et ttee s e e taeesesteaeseesenaesaees 105

3.2.2.1-8000 Series MOUUIES.......ccccuiiiiiiiiiticeeee e 128

3.2.3.1-9000 Series MOUUIES.......cccciiiiiiiiiiieee e 142

3.2.4.1-87000 S€ries MOAUIES.....cccueiiiiiieieeeeee ettt 156

4. ANAlog INPUE FUNCHIONS ...........c.cooviiicccc e 172

4.1.1-7000 Series MOAUIES .......cccuiiiiiiiiiiiie e s 174

4.2.1-8000 Series MOAUIES.......cccuiiiiiiiiiiiiee e s s 188

4.3.1-9000 Series MOUUIES ......ccocuiiiiiiieiiie ettt st sbe e s e s sanee s eaneas 196

4.4.1-87000 SEries MOUUIES .....c...eeiiiiiiiiieee ettt 204

4.5.1-97000 Series MOAUIES..........coiiiiiiiiiiie e 212

5. ANAlog OULPUL FUNCLIONS .........cooeoieieeeeeceee e 220

5.1. 1-7000 SEIieS MOAUIES ....coueiiiiiieeitie ettt s e sb e e s e e s e e sareessaneeens 222

5.2. 1-8000 SEIiES MOAUIES ....coueieiiiiieitie ettt ettt st e s sabe e s sareessareeeas 234

5.3.1-9000 Sries MOAUIES .....c..veiiiiiiiiiiieee e 244

5.4.1-87000 SEri€Ss MOUUIES ... .eeiiiuiiiiiiii ettt s nree e 254

5.5. 1-97000 SEri€S MOAUIES ... .eeiiiiiieitie ettt ettt ettt sttt e e st e e st e s sabeessaneesnnneeens 264

6. Error Code EXPlanation ...t s 274

7. Demos for 1/O Modules using CLANGUAEE................cccoovveveveeeveeeeeeeeeeeeeeeeee e, 275

7.1. DI/DO CONEIOI DOMO..uuettiiiiiiieiieieeiitttee et e e e s eeiitrttteeesssesssiabateseeeesssesssbaaaeeeeesssssasrrasseeeees 276

T.0 1 17K MOTUIES .. 276

7020 1-87K MOUIES ...t 283

7130 1-8K MOTUIES ... s 285

7.2, Al/AD CONTIOI DM cuueieriiiiiieeeee ettt et e e s ettt e e e e e s s e s es b ettt eeessseesssbaaaeeeeesssssasrraasseeeens 286

7.2 1 1-7TK MOTUIES .. 286

7.2.2. 1-87K/OTK IMOAUIES ...t e e e e e e e e et e e e e e e e e e e s e eeeeaeeeeeeaaans 289

7.2.3. 1-8K/IK IMOTUIES ...ttt sttt st s 291

APPENAIX.......oooieieeiieeeceee ettt ettt ettt ettt ettt ae sttt ete et et et teteenetenene 293

A. Demo for I/O Modules in slots on an [-87K 1/0O expansion UNit........ccccecveeeeeeeeiveeeeveeennnen. 293

B. Demo for I/O Modules in slots on an 1-8000 CONTIOIEr ......ooveeee e 298

C. The old version of the APl fUNCLION ....coocuiiiiiiiiiieee e 303

CL. 1-8017 API FUNCHION...ciutiiiteetie ettt ettt ettt e s e e e s e e neesaees 303

C2. 1-8024 API FUNCEION....utiiiiiiiiiiiiiiiic ittt 326

DI NV o o I = 1] 0 331
LinPAC Standard API Manual version 1.3.1 Page: 5

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



1. Getting Started

This chapter provides a guided tour that describes the steps needed to know, download, install

and configure the basic procedures for the user working with the LinPAC SDK for the first time.

1.1. Introduction the LinPAC SDK

This section will discuss some of the techniques that are adopted in the LinPAC SDK, including
detailed explanations that describe how to easily use the LinPAC SDK. The LinPAC SDK is based on
Cygwin and is also a Linux-like environment for Microsoft Windows systems, and provides a
powerful GCC cross-compiler and an IDE (Integrated Development Environment) that enables
LinPAC applications to be quickly developed. Therefore, once an application has been created, the
LinPAC SDK can be used to compile it into an executable file that can be run on the LinPAC

embedded controller.

1.1.1. Introduction to Cygwin

Cygwin is a collection of free software tools originally developed by Cygnus Solutions to allow
various versions of Microsoft Windows to act somewhat like a UNIX system. Cygwin is a Linux-like

environment for Windows consisting of two parts:

(1) A DLL (cygwinl.dll) which acts as a Linux emulation layer providing substantial Linux API
functionality.

(2) A collection of tools that provide users with the Linux look and feel.

LinPAC Standard API Manual version 1.3.1 Page: 6

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



1.1.2 Introduction to Cross-Compilation

Generally, program compilation is performed by running a compiler on the build platform. The
compiled program will then run on the target platform. Usually, these two processes are intended
for use on the same platform. However, if the intended platform is different, the process is called
cross compilation, where source code on one platform can be compiled into executable files to be
used on other platforms. For example, if the ‘arm-linux-gcc’ cross-compiler is used on an x86
windows platform, the source code can be compiled into an executable file that can run on an

arm-linux platform.

So why use cross compilation? In fact, cross compilation is sometimes more complicated than
normal compilation, and errors are easier to make. Therefore, this method is often only employed
if the program cannot be compiled on the target system, or if the program being compiled is so
large that it requires more resources than the target system can provide. For many embedded

systems, cross compilation is the only possible approach.

LinPAC Standard API Manual version 1.3.1 Page: 7

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



1.1.3. Download the LinPAC SDK

0 For Windows systems: Extract the .exe file into to the C:\ driver.

J For Linux systems (running a 32-bit 0S): Extract the .bz2 file into to the root ( /) directory.

LinPAC Download Path

iMX8MM | LP-2841M | https://www.icpdas.com/en/download/index.php?model=LP-2841M

LP-2x4x

https://www.icpdas.com/en/download/show.php?num=1195&model=LP-5231M
AM335x LP-52xx

Series LP-8x2x
https://www.icpdas.com/en/download/show.php?num=915&model=LP-9821

LP-9x2x
X86/E38xx
_ LX-Series | https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371
eries
Note:

1) There are six independent LinPAC SDKs above, and different LinPAC cannot share both source
files, library file and compiled files, user should be download the respective LinPAC SDK versions
from the target manager and use them.

2) We recommend user to change user ID to become root by ‘sudo’ or ‘su’ command.

3) Linux 64-bit operating system lacks 32-bit support libraries. If your Linux PC is 64-bit OS, you
must install 32-bit libraries on your system before you run the 32-bit version of the LinPAC SDK

(Linux version).

LinPAC Standard API Manual version 1.3.1 Page: 8

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



https://www.icpdas.com/en/download/show.php?num=1195&model=LP-5231M
https://www.icpdas.com/en/download/show.php?num=915&model=LP-9821
https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371

1.2. The Architecture of LIBIS8K.A in the Linux PAC

The library file libi8k.a is designed for 1-7000/8000/9000/87000/97000 applications running on
the LinPAC Embedded Controller based on the Linux operating system and can be applied when
developing custom applications using the GNU C language. ICP DAS provides a wide variety of
demo programs that can be used to easily understand how to implement the functions and

ensure that custom projects and applications can be quickly developed.

The relationships among the libi8k.a and user’s applications are depicted as Figure 1.2-1:

User Application I-7000/8000/9000/
87000/97000

~ Driver

Libi8k.a
Physical Layer

I-7000/1-8000/1I-9000/
I-87K/I-97K
series modules

Figure 1.2-1. The relationship between the libi8k.a library and the custom applications

Functions for the LinPAC Embedded Controller are divided into sub-groups for ease of use within

the different applications:
1. System Information Functions 2. Analog Output Functions
3. Digital Input Functions 4. Analog Input Functions

5. Digital Output Functions

The functions contained in the libi8k.a library is specifically designed for the LinPAC controller, and
those functions needed for specific applications can easily be determined from the descriptions

provided and from the demo programs described in chapter 7.

LinPAC Standard APl Manual version 1.3.1 Page: 9

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



1.3. Setting up the Development Environment

The OS of LinPAC series is Linux, and the ‘LinPAC SDK’ is a development toolkit provided by ICP
DAS, which can be used to easily develop custom applications for the LinPAC series embedded
controller platform. The toolkit consists of the following items.

® LinPACSDK library files

® LinPACSDK include files

® Demo files

® GNU ToolChain

Refer to the following chapter to download and install the appropriate SDK.

Step LP-2241M/5231/8x2x/9x2x LP-2841M/LX-8000/9000
0. Download SDK on Windows or Linux PC Download SDK on LinPAC
1. Find demo ‘helloworld.c’ in SDK Find demo ‘helloworld.c’ in SDK

Compile the demo on Windows or Linux PC
2. Compile the demoon LinPAC directly
using SDK

Execute the application on LinPAC at
3. Upload and execute the demo on LinPAC
boot time

Execute the application on LinPAC at boot

time

1.3.1. LinPAC PXA270 Series

The topic provides LinPAC PXA270 SDK installation instructions for the following platforms:
»  Linux (running a 32-bit operating system)

Download/Install LinPAC PXA270 SDK on Linux

>  Windows
Download/Install LinPAC PXA270 SDK on Windows

Integrating LinPAC PXA270 SDK with Code::Blocks IDE

LinPAC Standard APl Manual version 1.3.1 Page: 10

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



0 Download/Install LinPAC PXA270 SDK on Linux

1. Before installing the LP-8x4x SDK, several tasks must be completed, as the root user by ‘sudo’

or ‘su’ command.

2. Insert the installation CD into your CD-ROM driver (refer to Figures 1.3.1-1 and 1.3.1-2). Locate
the ‘linpac_pxa270_sdk_for_linux.tar.bz2’ file in the \napdos\Ip-8x4x\SDK\ folder, or visit the
ICP DAS website to download the latest version.

=13

F:\Napdosip-8xdx SDK v ) e &) icpdas.com/pu ¥ | B [#2]| X

—.
|§ |inpac_pxa27D_sdk_For_|inux.tar.szI
% lnpac_pxa270_sdk_for_windows.exe

= fip.icpdas.com-/pub/cd/linpac/napdos/lp-8xd x

ftp.icpdas.com -
/pub/cd/linpac/napdos/lp-8x4x/sdk/

[To Parent Directory]

Ilinpac_pxaE?D_sdk_l‘or_linux.tar. b22|
inpac_pxa270_sdk_for_windows.exe

Figure 1.3.1-1. Figure 1.3.1-2.

3. Download SDK in ‘/ (the root directory)’, and try the following command to decompress file.

(refer to Figure 1.3.1-3)

# tar jxvf linpac_pxa270_sdk_for_linux.tar.bz2

& root@LinuxPC-ICPDAS: /

[root@localhost /]#
[rootBlocalhost /]#)tar jxuf linpac_pxza278_sdk_for_linux.tar.bz2

lincon/i8k/opt/1lib/1libmenu.so
lincon/isksopt/1ib/lingak_pixbuf-2.8.1a
lincon/i8k/opt/lib/libiconu.so
lincon/i8k/opt/lib/libgobject-2.0.1a
lincon/i8k/opt/1ib/1ibgdbn.a
lincon/i8k/opt/1lib/1libjpeg.so
lincon/i8k/opt/lib/libexpat.a
[rootBlocalhost /]#

[root@localhost F]# 1s

ADK  etc media nuwa shin tFtpboot bin
home misc opt selinux tmp boot lib
linpac_pxa278_sdk_for_linux.tar nmnt proc srv usr
dev lincon lost+found net root Sys var

[rootElocalhost /)

Figure 1.3.1-3. Decompress ‘.tar.bz2’ file

LinPAC Standard APl Manual version 1.3.1 Page: 11

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4. Before compile the program, you need to set LinPAC PXA270 SDK path in environment
variables. To execute the shell startup script and set the environment variables, enter the

following command.

# . /lincon/linpac.sh

5. Type ‘make’ on the command line it will execute the compile command according to the
Makefile. (refer to Figure 1.3.1-4)
& oot @ LinuxPC-ICPDAS: f

rootELinuzPC-ICPDAS://1lincondt
rootELinuxPC-ICPDAS -/ /1incondt jexport |grep PATH
declare -x PATH="//flincon/tools/bin://1lincon/tools/sbin:/fusr/local/noweb://1in
conftools/bin://lincon/tools/sbin:/usr/local/noweb:fusr/localssbin:/usr/local/
bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games™

rootELinuxPC-ICPDAS://1incondt
rootELinuxPC-ICPDAS:/f1lincon#t|cd i8k/examples/
ruutELinuxP[:—IEPDFIS:Hlin[:unf:mﬁ_
rootELinuxPC-ICPDAS:/f1lincon/i8k/examplest 1s .
comnonillgui] fEME Makefile modbus README xuwboard
rootELinuxPC-ICPDAS://lincon/iBk/examplest
ruutELinuxP[:—I[:PDFIS:Hlincunfiﬂk!examples#

Figure 1.3.1-4. Compiling demo code according to the Makefile

O Download/Install LinPAC PXA270 SDK on Windows

The LinPAC_PXA270 _SDK_for_Windows.exe provides compilers, library, header, examples, and
IDE workspace file (for Code::Blocks project). Following the step by step procedure below will help
users get started.

1. Insert the installation CD into your CD-ROM driver.

2. Open the \napdos\Ip-8x4x\SDK\ folder and double-click the icon for the

‘linpac_pxa270 sdk for windows.exe’ file, when the Setup Wizard is displayed, click the

‘Next>" button to continue, refer to Figure 1.3.1-5.

LinPAC Standard APl Manual version 1.3.1 Page: 12

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3. Click the ‘] accept the agreement’ option and then click the ‘Next’ button, refer to Figure

1.3.1-6 below.

‘B Setup - LinPAC PXA270 SDK V2.0 - >

'S+ Setup - LinPAC PXA270 SDK V2.0 —

Welcome to the LinPAC
PXA270 SDK V2.0 Setup
Wizard

This will install LinPAC PXA270 SDK V2.0 on your computer.

It is recommended that you close all other applications
before continuing.

Click Mext to continue, or Cancel to exit Setup.

Figure 1.3.1-5.

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

GNU General Public License o
Linux is written and distributed under the GNU General Public

License which means that its source code 1s [reely-distnbuted and
available to the general public.

@I accept the agreement
(_)1do not accept the agreement

< Back Cancel

Figure 1.3.1-6.

4. The ‘LinPAC PXA270 SDK’ files will be extracted and installed and a progress bar will be

displayed to indicate the status, refer to Figure 1.3.1-7.

5. Once the software has been successfully installed, click the ‘Finish’ button to complete the

development toolkit installation, refer to Figure 1.3.1-8.

@ Setup - LiInPAC PXA270 SDK V2.0 - X

&

Installing

Please wait while Setup installs LinPAC PXA270 SDK V2.0 on your
computer.

Extracting files...
C:\cygwin\LinCon8k\arm-linux\include\asm\tlb.h

Cancel

% Setup - LinPAC PXA270 SDK V2.0 =

Completing the LinPAC PXA270
SDK V2.0 Setup Wizard

Setup has finished installing LinPAC PXA270 SDK V2.0 on
your computer. The application may be launched by selecting
the installed icons.

Click Finish to exit Setup.

Figure 1.3.1-7.

LinPAC Standard APl Manual

version 1.3.1

Figure 1.3.1-8.

Page: 13

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com




6. Open the LinPAC PXA270 SDK installation directory, the default data directory location is

‘C:\cygwin\’, user can see the contents of folder. Refer to Figure 1.3.1-9.

& Cygwin M=

|_'| Ci\cygwin v‘
CodeBlock
LinCon8k
opt

usr
unins000.dat

i unins000

Figure 1.3.1-9. Open the folder of the LinPAC AM335x

7. Open the ‘C:\cygwin\LinCon8k’ folder and see the content. Refer to Figure 1.3.1-10.

=) arm-linux D include =) man
2 bin =) info LinPAC_PXA270
) examples o lib & setenv

Figure 1.3.1-10. The contents of the folder

8. From the desktop, right-click the shortcut icon for the ‘LinPAC PXA270 Build Environment’
and select ‘Run As Administrator’. Or click the ‘Start’ > ‘Programs’ > ‘ICPDAS’ > ‘LinPAC PXA270

Build Environment’.

A Command Prompt window will then be displayed that allows applications for the LP-8x4x to

be compiled. Refer to Figure 1.3.1-11.

B LinPAC PXA270 Build Environment - O x

C:heygwiniLinCon8k=CMD.EXE /k c:‘\cygwin‘LinCon8k\setenv.bat
—————————————— LinPAC PX&270 SDK Enviromment Configure ------------
Target JICPDAS LinPAC PXAZ70 Series (Arm based)

Work Directory :C:\Cyewin\LinConSk

C:heyewinilinCon8ks o
Figure 1.3.1-11. Click the ‘LinPAC_AM335x Build Environment’

LinPAC Standard APl Manual version 1.3.1 Page: 14

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



9. Type ‘make’ command (needs run as an administrator). A Command Prompt window will then

be displayed that allows applications for the LP-8x4x to be compiled. Refer to Figure 1.3.1-12.

o LinPAC PXA270 Build Environment

Cothevgwin'linCon8k=-CHD .EXE /k c:\evgwin'linConfk\setenv.bat
-------------- LinPAC PXAZTD 3DE Environment Configonre --------------
Target (ICPDAS LinPAC PHAZTD Series (Arm based)

ork Directory  :C:Cwegwin‘\LinConSk

Coheyvgwin'\LinCon8ks=cd exanples

Ceteyvzwin'\linCon8kexanpless1s
Makefile README common gui 17k 137k 18k java xwhoard modbus

Cohevgwin'linConfklexanples] nakes

arim-linux-goe -1, -l..finclulE ¢ -0 commondhelloworld.o common/helloworld.c
arin-linux-gee -1, -I..finclude -lm -o .fcommon/helloworld ./commondhelloworld.o ../lib/1libi8k.a
mm -f ./common/helloworld.o

arm-linux-gec -1, -I../1nclude ¢ -0 commonfgetlist.o commonigetlist.c

arin-linux-goe -1, -I../include -lm -0 .fcommon/getlist .fcommon/getlist.o ../lib/1ibigk.a
i -f .fcommonfgetlist.o

ari-linux-gee -1, -1../include -¢ -0 commondread_sn.o common/read_sn.c

arm-linux-gec -1, -I..finclude -lm -0 .fcommon/read_so . fcommondread_sn.o ..flib/libigk.a
o -f ./commondread sn.o

arm-linux-gee -1, -1, . /include ¢ -0 commonfechosvr.o comnonlechosvr.c

arin-linux-gee -1, -I..finclude -lm -0 .fcommonlechosvr .fcommonfechosvr.o ../lib/1ibigk.a
i -T . fcommonfechosvr.o

arm-linux-gee -1, -1../include -¢ -0 commondsetport.o common/setport.c

arm-linux-gec -1, -I..finclude -lm -0 .fcommon/setport .fcommonfcetport.o ..flib/libigk.a

Figure 1.3.1-12. Compiling demo code according to the Makefile

Once the installation is complete, the library and demo files can be found in the following
locations:

The path for the Libi8k.a file is ‘C:\cygwin\LinCon8k\lib’.

The path for the include files file is ‘C:\cygwin\LinCon8k\include’.

The path for the demo file is ‘C:\cygwin\LinCon8k\examples’'.

LinPAC Standard APl Manual version 1.3.1 Page: 15

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



(J Integrating LinPAC PXA270 SDK with Code::Blocks IDE

This tutorial gives you easy-to-follow instructions, with screenshots, for setting up a compiler (the
Linaro GCC compiler), a tool that will let you turn the code that you write into programs, and
Code::Blocks IDE, a free development environment. This tutorial explains how to integrate LinPAC

PXA270 SDK with Code::Blocks IDE on Windows platform.

Step 1: Download Code::Blocks IDE.

> Go to this website: http://www.codeblocks.org/downloads/binaries

> Go to the Windows 2000/XP/Vista/7 section, and download Windows version.

Step 2: Install Code::Block IDE.
» The default install location is the C:\Program Files\CodeBlocks folder.
» A complete manual for Code::Blocks is available here:

http://www.codeblocks.org/user-manual

Step 3: Running in Code::Block IDE.

»  Allfiles and settings that are included in a LinPAC_PXA270 SDK workspace file.

» Open the C:\cygwin\CodeBlock folder, and double click the ‘LinPAC_PXA270_SDK’ as below
(refer to Figure 1.3.1-13):

& CodeBlock E‘@J§|

‘_] Cheygwin\ CodeBlock v‘

read_sn
¥ LinPAC_PXA270_SDK
] LinPAC_PXA270_SDK

Figure 1.3.1-13. Startup the LinPAC AM335x SDK

LinPAC Standard API Manual version 1.3.1 Page: 16

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


http://www.codeblocks.org/downloads/binaries
http://www.codeblocks.org/user-manual

»  Following window will come up (refer to Figure 1.3.1-14):

H [LinPAC_PXA270_SDK] - Code:Blocks 13.12 — O e
File Edit View Search Project Build Debug wxSmith Tools Plugins Settings Help
FeB@ <« 8 | ABIE > G0 v
Management x
1| Projects | Symbols | Re:»
) Workspace
% LinPAC_PXA270_SDK
[—jB Sources
58 LinCon8k
BB examples
& 8 common Logs & athers
--B gui
B 7k
--B modbus
i1 8 xwboard
- Java Sources
=+ Others

x

J} Code::Blocks x| €3 Build log | # Buid messages x| £3 Debugger x

Figure 1.3.1-14. Startup the LinPAC AM335x SDK

» Check Compiler settings for Linaro GCC cross compiler : Click ‘Settings’ > ‘Compiler’ >

‘Toolchain executables tab’ (refer to Figure 1.3.1-15) :

Compiler settings

Global compiler settings
Selected compiler
\GNU GCC Compiler for ARM ~|

Set as default [ Copy ” Renamel Delete Reset defaults

Toolchain executables |Custnm variables | Build nptionsl Other settings | *
Compiler's instalation directory

%‘ ‘ C:\cygwin\LinCon8k\bin B

NOTE: Al programs must exist either in the "bin" sub-directory of

Program Files iti
Batch buids g Additional Paths

C compiler: | arm-inux-gec.exe

Global compiler
settings

C++ compiler: | arm-inux-gcc.exe

Linker for dynamic libs: | arm-inux-gcc.exe

Linker for static lbs:

B @) @) &)

| arm-inux-ar.exe

Debugger: ’GDBICDB debugger : Defauk ']

Resource compiler: B

Make program: make.exe [J
[ oK ] [ Cancel ]

Figure 1.3.1-15. Check compiler settings

LinPAC Standard APl Manual version 1.3.1 Page: 17

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



» Check Link libraries for Linaro GCC cross compiler : Click ‘Settings’ > ‘Compiler’ > ‘Linker

Settings’ (refer to Figure 1.3.1-16) :

Compiler settings

Global compiler settings

Selected compiler
GNU GCC Compiler for ARM v

Set as defaul Copy Rename Delete Reset defaults

Compiler settings || Linker settings|| Search directories  Toolchain executables Custor * | *

Policy:

Link libraries: Other linker options:
C:\eygwin\LinCon8k\lib\libi8k.a

Edit Delete Clear

Copy selected to...

OK Cancel

Figure 1.3.1-16. Check Link libraries for Linaro GCC cross compiler

»  Check Makefile for Linaro GCC cross compiler : Click ‘Project’ > ‘Properties’ (refer to Figure
1.3.1-17) :

B [LinPAC_PXA27Cga0K] - Code:Blocks 13.12 - O x
File Edit View SLo_._I Projectl Build Debug wxSmith Tools Plugins Settings Help
B8 9 Project/targets options || o X
Project settings Buid targets Buid scripts Notes C/C++ parser options Debugger
Mal t
e i = Tite: |LinPAC_PXA270_SDK |
ﬂ Projects | Symbols | » . :
Platforms: |W|nd0ws;Un|x; |
Workspace
E‘ LinPAC_PXA270_sDk| Filename: C:\cygwin\CodeBlock\LP-8x4x_SDK.cbp
E—jB Sources Makefile: | Makefile |
=& LinCongk [ This is a custom Makefile
== examples The file must exist, no Makefile wil be auto-generated!
A common If you make changes here, the special settings in the projects buid
i . options wil only be enabled (or disabled), if the project is saved.
wE gu ion d :| C:\eygwin\LinCon8K\exampl
B8 i7k Execution directory:| C:\cygwin'LinCon8k\examples
.85 modbus Precompied headers: Strategy - -
85 xwboard Generate PCH fn a dlrecFory along5|d§ original header
i85 Java Sources Generate PCH in the .object_: gutput dir
.85 Others Generate PCH alongside original header (default)
If you change the strategy used for PCH generation,
please delete the old PCH file {(or directory) manually to avoid conflicts...
< > | Object names generation: [ ] Generate extended object names (i.e. "foo.cpp.0" instead of "foo.0")
1 (this setting is mostly useful for large projects containing simiarly named files
differing on extension only)
Project's dependencies... Project’s build options...
OK Cancel

Figure 1.3.1-17. Check Makefile for Linaro GCC cross compiler
LinPAC Standard APl Manual version 1.3.1 Page: 18

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



»  Click Build options, and it will compile the LinPAC PXA270 project completely (refer to Figure

1.3.1-18).
w Cheygwin\LinCon8k\examples\guitdemo1.c [LinPAC_PXA270_SDK] - Code:Blocks 13.12 — O *
File Edit View Search Project Build Debug wxSmith Tools Plugins Settings Help
FeEA «» YRR ARSr e 0 P BE 6D 4D D gl | &
;| <global> ~ -
Management x C:\eygwin\LinCon8k\examples\common\echoswvr.c x| Cz\cygwin\LinCon8k\examples\gui\demol.c x
4 Projects | Symbols | Re )
22 ~
© Workspace 23 <math.h>
=-®g LinPAC_PXA270_SDK 24 <stdio.h>
B Sources 25 <stdlib.h>
18 LinCon8k 26 <gtk/gtk.h>
2B examples 27 "msw.h"
& common 28 struct block v
=r= gui <
B iTk Logs & others x
B modbus /i Code::Blocks x| ', Search results | §3 Buildlog * # Buld messages  x &3 Debugger =
=B xwboard - -
8 Java Sources arm—l:!_nux—gcc -I. -I.. /:!_nclud.e -c -0 modbus/getmodbus.o modbus/getmodbus.c ~
.8 Others arm-linux-gcc -I. -I../include -1lm -o ./modbus/getmodbus ./modbus/getmodbus.o
../1lib/1ibiBk.a
rm —-f ./modbus/getmodbus.o
arm-linux-gecec -I. -I../include -c -0 modbus/setmodbus.o modbus/setmodbus.c
arm-linux-gce —-I. -I../include -1lm -o ./modbus/setmodbus ./modbus/setmodbus.o
../1lib/1libigk.a
rm —-f ./modbus/setmodbus.o
arm-linux-gcc -I. -I../include -c¢ —o common/helloworld.o common/helloworld.c
arm-linux-gcc -I. -I../include -1lm -o ./common/helloworld ./common/helloworld.o
../1lib/libiBk.a
rm —-f ./common/helloworld.o
arm-linux-gcc -I. -I../include -c —o common/getlist.o common/getlist.c
arm-linux-gcc -I. -I../include -lm -o ./common/getlist ./common/getlist.o
../1lib/1ibiBk.a
rm —-f ./common/getlist.o
arm-linux—-gcc -I. -I../include -¢ —o common/read sn.o common/read sn.c
arm-linux-gece -I. -I../include -1m -o ./common/read sn ./common/read sn.o
../1lib/1libigk.a
rm —f ./common/read sn.o
arm-linux-gcc -I. -I../include -c —o common/echosvr.o common/echosvr.c
arm-linux-gcc -I. -I../include -1lm -o ./common/echosvr ./common/echosvr.o
../1lib/libiBk.a
rm —-f ./common/echosvr.o
arm-linux-gcc -I. -I../include -c —o common/setport.o common/setport.c v
|
Figure 1.3.1-18. Compiling a C program
[ Note]

If you observer some characters may not display properly in cmd.exe, change the code page for

the console only, do the following:
(0 Double-click the shortcut icon for the ‘LinPAC PXA270 Build Environment’.
O Type command: chcp 65001 (Refer to Figures 1.3.1-19 and 1.3.1-20).

Bl LinPAC PXA270 Build Environment — O X B LinPAC PXA270 Build Environment — O X

C:icygwintLinCon8k=CMD.EXE /k c:l\cygwin\linCon8kisetenv.bat| |active code page: 65001
—————————— LinPAC PX4270 SDK Environment Configure --------

) ‘ C:\cygwinLinCon3k>
Target - ICPDAS LinPAC FXAZ70 Series (Arm based)

Work Directory :C:\Cygwin‘\LinConSk
C:veyewin\LinCon8k= chep 65001

Figure 1.3.1-19. Figure 1.3.1-20.

LinPAC Standard APl Manual version 1.3.1 Page: 19

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



1.3.2. LinPAC AM335x Series

The topic provides LinPAC_AM335x SDK installation instructions for the following platforms:
»  Linux (running a 32-bit operating system)

Download/Install LinPAC AM335x SDK on Linux

> Windows
Download/Install LinPAC AM335x SDK on Windows

Integrating LinPAC AM335x SDK with Code:: Blocks IDE

O Download/Install LinPAC AM335x SDK on Linux

1. To create a ‘icpdas’ folder in root directory, maybe you need to change the root user by ‘sudo’

or ‘su’ command. (Refer to Figure 1.3.2-1)

& root@LinuxPC-ICPDAS: ficpdas

rootELinuxPC-ICPDAS:/# pwd

/

rootELinuxPC-ICPDAS:/# mkdir icpdas
rootBLinuxPC-ICPDAS:/# cd icpdas
rootBLinuxPC-ICPDAS: ficpdas# 1s
linpac_am335%_sdk_for_linux.tar.bz2

rootELinuxPC-ICPDAS:/icpdas#

Figure 1.3.2-1. Create a directory named ‘icpdas’

.. . & c & hitps://www.icpdas.com/en/download/show.php?num=915&model=L.. @ & & +f
2. Visit the ICP DAS website to
. | ] & derm
download the latest version of ICP
DAS PRODUCTS SOLUTIONS NEWS & EVENTS SUPPORT CORPORATE CONTACT US
the L|nPAC AM335x SDK _— A HOME > SUPPORT > Download Center > About Product > Software > SDK
- [ pownLoAD v

linpac_am335x_sdk_for_linux.t LP-8x21, LP-9x21 series

ar.bz2’ for example. Related Resources

I-8K/I-87K Software Support of LinPAC

|-K/I-97K Software Support of LinPAC

TOP

FILE
FILE NAME VERSION DATE
LinPAC AM335x SDK for LP-8x21 For T
and LP-9x21 (Windows) 23 18.7MB Windows PC
LinPAC AM335x SDK for LP-8x21 23 99.5 MB For Linux PC

and LP-9x21 (Linux)

Figure 1.3.2-2.

LinPAC Standard APl Manual version 1.3.1 Page: 20

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



|©2H: \LinPACWapdoslp 9x2x\SDK |

Blinpac_am335x_sdk_for_linux.tar.bz2 |
% LinPAC_AM335x_SDK_for_Windows.exe

A=

-

e

—_—

Figure 1.3.2-3.

3. Try the following command to decompress file. (Refer to Figure 1.3.2-4)

# tar jxvf linpac_am335x_sdk_for_linux.tar.bz2

root@LinuxPC-ICPDAS: ficpdas

rootELinuxPC-ICPDAS :/icpdas#f tar jxvf linpac_am335x_sdk_for_linux.tar.bz2
linpac_am335x_sdk/
linpac_am335%_sdk/linpac_am335x.sh

linpac_am335x_sdk/tools/

linpac_am335x_sdk/tools/1lib/

linpac_am335x%_sdk/tools/lib/gcc/
linpac_am335x_sdk/tools/lib/gcc/arm-linux-gnueabihf s
linpac_am335x_sdk/tools/lib/gcc/arm-1linux-gnueabihf/%.7 .3/
linpac_am335x_sdk/tools/lib/gcc/arm-1inux-gnueabihf/4.7.3/crtbeginS.o
linpac_am335x_sdk/tools/lib/gcc/arm-1inux-gnueabihf/4.7.3/1ibgcc.a

Figure 1.3.2-4. Decompress ‘.tar.bz2’ file

4. Before compiling the program, you need to set LinPAC_AM335x SDK path in environment

variables: using the provided environment variable script, which is called linpac_am335x.sh

(Refer to Figure 1.3.2-5).
“ root @LinuxPC-ICPDAS: ficpdas/linpac_am335x_sdk

rootELinuxPC-ICPDAS :/icpdash

rootELinuxPC-ICPDAS:ficpdas# cd linpac_am335x_sdk
rootELinuxPC-ICPDAS:/icpdas/linpac_am335x_sdkit 1s

i8k 1linpac_am335%.sh tools

rootELinuxPC-ICPDAS:/icpdas/linpac_am335x_sdk#t . linpac_am335x.sh

rootELinuxPC-ICPDAS :ficpdas/linpac_am335x_sdk#t export | grep PATH

declare -x PATH="/icpdas/linpac_am335x_sdk/tools/bin:ficpdas/linpac_am335%_sdk/tools/sbin:
fusr/flocal/noweb:fusr/local/fsbin:fusr/local/fbin:fusr/shinzfusr/bin:/shin:/bin:fusr/games™
rootELinuxPC-ICPDAS:ficpdas/linpac_am335x_sdk# 1s i8kS

Changelog examples include 1ib opt

rootELinuxPC-ICPDAS:/icpdas/linpac_am335x_sdkit

Figure 1.3.2-5. Setting environment variables for LinPAC_AM335x SDK

LinPAC Standard APl Manual version 1.3.1 Page: 21

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



5. Type ‘make’ on the command line it will execute the compile command according to the

Makefile. (Refer to Figure 1.3.2-6)

= root@LinuxPC-ICPDAS: /ficpdasflinpac_am335x_sdk/i8kfexamples

rootELinuxPC-ICPDAS :/icpdas/linpac_am335x_sdk/i8k/examples# make
arm-linux-gnueabihf-gcc -I. -I../include -c -0 xvboard/getxvai.o xuboard/getxzvai.c
arm-linux-gnueabihf-gcc -I. -I../include -o ./xvboard/getzvai ./xvboard/getxzvai.o ../
lib/libi8k.a -1m

rm -f ./xuboard/getzvai.o

arm-linux-gnueabihf-gce -I. -I../include  -c -0 xvboard/getxvao.o xuvboard/getxvao.c
arm-linux-gnueabihf-gce -I. -I../include -0 .fxvboard/getxvao ./xvboard/getxvao.o ../
libslibi8k.a -1m

rm -f ./¥vhoard/getxvao.o

arm-linux-gnueabihf-gcec -I. -I../include -c -0 xvboard/getxvdi.o xvboard/getxvdi.c
arm-linux-gnueabihf-gcec -I. -I../include -0 ./xvboard/getxvdi ./xvboard/getxudi.o ../
lib/libi8k.a -1m

rm -f ./xvboard/getzvdi.o

arm-linux-gnueabihf-gcc -I. -I../include -c -0 xvboard/getxvdo.o xvboard/getxvdo.c
arm-linux-gnueabihf-gcc -I. -I../include -o ./xvboard/getxzvdo ./xvboard/getxuvdo.o ../
lib/libi8k.a -1m

rm -f ./®vboard/getxvdo.o

rm-linux-gnueabihf-gcc -I. -I../include
inux-gnueabihf-gce -I. -I../7i
.d —1m

Figure 1.3.2-6. Compiling demo code according to the Makefile

LinPAC Standard APl Manual version 1.3.1 Page: 22

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



0 Download/Install LinPAC AM335x SDK on Windows

The LinPAC_AM335x_SDK_for_Windows.exe provides compilers, library, header, examples, and

IDE workspace file (for Code::Blocks project).

1. Download LinPAC AM335x SDK from website.

2. Open the ‘LinPAC_AM335x_SDK_for_Windows.exe’ file, when the Setup Wizard is displayed,
click the ‘Next>" button to continue, refer to Figures 1.3.2-7 and 1.3.2-8.

3 H:\LinF ACWWapdosilp-Sxz2:\8DE Welcome to the LinPAC_AMBBS}{

Blinpac am335x sdk for linuz.tar.bz? | ™ SDK Setup Wizard
IFLinPPxC_HMBSSX_SDK_for_Windows.exe | (¢

This will install LinPaC _AM335x SOK Y1.3 on your computer,

It is recommended that vou close all other applications before
conkinuing.
Click, Mext ko continue, or Cancel to exit Setup,

[ Mext > 4 [ Cancel

Figure 1.3.2-7. Figure 1.3.2-8.

3. Click the ‘I accept the agreement’ option and then click the ‘Next’ button (refer to Figure
1.3.2-9), and select Start Menu Folder option and then click the ‘Next’ button, refer to Figure
1.3.2-10.

Setup - LinPAC_AM335x SDK 2] ) [ @ Setup - LinPAC_AM335x SDK [2]01/[X)

License Agreement NpA| | Setect start Menu Folder h
Please read the following important information before continuing KRS Where should Setup place the program's shortcuts? &7
Please read the following License Agreement. You must accept the terms o
of this agreement before continuing with the installation. Setup will create the program's shortcuts in the following Start
(GNU General Public License o A Menu folder.
Linux is written and distabuted under the GNU General Public License To continue, click Next. If you would ke to select a dferent folder,
:}sch mw&s cha&s sauoeoo&e” 15 freely-distabuted click Browse.
available % the genexal public, v :
ICPDAS\LinPAC_AM335X_SDK
@Z—(—*——_} ¥ the agreement ! > = = ‘
(O1do not accept the agreement [TJpon®t create a Start Menu folder
[ <gack [ nNext> ] [ Cancel | [ <esck J| mext> | [ concel |
Figure 1.3.2-9. Figure 1.3.2-10.
LinPAC Standard APl Manual version 1.3.1 Page: 23

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



The LinPAC_AM335x SDK files will be extracted and installed and a progress bar will be

displayed to indicate the status, refer to Figure 1.3.2-11.

Once the software has been successfully installed, click the ‘Finish’ button to complete the

development toolkit installation, refer to Figure 1.3.2-12.

Setup - LinPAC_AM335x SDK [Z ][]
Installing

Please wait while Setup installs LinPaC_AMI35x 50K
on your computer,

Extracting files. ..
CihovgwimLinPaC_AM335x_SDKexamples|iFkisend_read.c

[

X

H Setup - LinPAC_AM335x SDK [2|[B]X]

Completing the LinPAC_AM335x
SDK Setup Wizard

Setup has finished installing LinP&C_AM335x 30K on vour
computer. The application may be launched by selecting the
installed icons.

Click Finish ko exit Setup.

Figure 1.3.2-11.

Figure 1.3.2-12.

6. Open the LinPAC_AM335x SDK installation directory, the default data directory location is

‘C:\cygwin\’, the user can see the contents of the folder. Refer to Figures 1.3.2-13 and

1.3.2-14.

) Ciewgwin w
) CodeBlock

opt
= unins000 . dat
e nins000 exe

& LinPAC_AM335x_SDK [C|BX]

O Cheyewin\LinPAC AM3I35x SDE v

Clezamples

Dinclude

lib

) Linaro GCC_ 4.7
FILinFAC AW335% hat

Tloeteny bat!

Figure 1.3.2-13.

LinPAC Standard APl Manual

version 1.3.1

Figure 1.3.2-14.

Page: 24

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



7. From the desktop, double-click the shortcut icon for the ‘LinPAC_AM335x Build Environment’
or click the ‘Start’ > ‘Programs’ > ‘ICPDAS’ > ‘LinPAC_AM335x_SDK’ > ‘LinPAC_AM335x Build
Environment’.

A Command Prompt window will then be displayed that allows applications for the

LinPAC_AM335x to be compiled. Refer to Figures 1.3.2-15 and 1.3.2-16.

& cxamples

_B CheygwiniLinPAC_AM335x SDE'ezamples
| ECOImon

« LinPAC_AM335x Build Environment

C:seyguin~LinPAC_AM335x_SDK>CHMD._ERE
Ak ciseyguwinSLinPAC_AM335x_SDKssetenwv.bhat

Target :ICPDAS LinPAC AM335x Series
llork Directory: C:scyguinsLinPAC_AM335x_SDE

CiscyguinsLinPAC_AM335x_SDK>

] readme. tzt

Figure 1.3.2-15. Figure 1.3.2-16.

8. Type ‘make’. A Command Prompt window will then be displayed that allows applications for

the LinPAC_AM335x to be compiled. Refer to Figure 1.3.2-17.

@ CAWINDOWS\system32\cmd exe - make

Cohveyewindl inPAC _an335x_SDE=CMD.EXE /k c:levewini\LinPAC_AM335x SDE\zetenv.bat

—————————————— LinPAC aM335x% SDE Environment Confipure --------o-oo--

Target : ICPDAS LinPaC AM335x

Mork Directory @ C:hvcyegwindLinPAC_aM335x SDEY

CohveyvewindL inPAC an335x SDE»cd examples

Cotvevewindl inPAC _an?35x_SDE‘\exanplez=mnake

arm-linux-gnueabihf-gec -1 -1..finclode -¢ -o wvboardfeetxvai.o xvboard/eetxval.c
arm-linux-enveabihf-gec -1, -1 finclude -0 . fuvboard/getxvai . fxvboard/eetxvai.o ../ 1ib/1ibi8k.a -]
rm -f luvboard/getxvai.o

ari-linux-gnueabihf-gcc -I. -1, finclude -¢ -0 wvboard/zetuvao.o wvboard/gzetyvao.c
arim-linnx-gnueabihf-gce -1, -I../include -0 . fuvboardfgetyvao | fxvboard/getyvao.o .. flibflibi8k.a -1
rm -T /uvboard/getxvac.o

ari-linux-gnveabihf-goe -I. -1, finclude -c -o wvboard/eetuvdi.o xvboard/getxvdi.c

4| | »

Figure 1.3.2-17. Compiling demo code according to the Makefile

LinPAC Standard APl Manual version 1.3.1 Page: 25

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



[ Integrating LinPAC AM335x SDK with Code::Blocks IDE

This tutorial gives you easy-to-follow instructions, with screenshots, for setting up a compiler (the
Linaro GCC compiler), a tool that will let you turn the code that you write into programs, and
Code::Blocks IDE, a free development environment. This tutorial explains how to integrate LinPAC

AM335x SDK with Code::Blocks IDE on Windows platform.

Step 1: Download Code::Blocks IDE.

> Go to this website: http://www.codeblocks.org/downloads/binaries

> Go to the Windows 2000/XP/Vista/7 section, and download Windows version.

Step 2: Install Code::Block IDE.
» The default install location is the C:\Program Files\CodeBlocks folder.
» A complete manual for Code::Blocks is available here:

http://www.codeblocks.org/user-manual

Step 3: Running in Code::Block IDE.
»  All files and settings that are included in a LinPAC_AM335x_SDK workspace file.

»  Open the C:\cygwin\CodeBlock folder, and double click the ‘LinPAC_AM335x_SDK’ as below
(Refer to Figure 1.3.2-18):
& CodeBlock

2 CheygwinCodeBlock v
ui‘lread an

IilePHC"HMB Sx "SDK laj,rout

Figure 1.3.2-18. Startup the LinPAC AM335x SDK

LinPAC Standard API Manual version 1.3.1 Page: 26

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


http://www.codeblocks.org/downloads/binaries
http://www.codeblocks.org/user-manual

»  Following window will come up (Refer to Figure 1.3.2-19):

p LInPAC am335x SDK\examplesicommen\geiexdic [LinPAC AM335x SDK] - Code::Blocks 10.05 @

File Edit Wiew Search Froject Build Debug wxSmith Tools Fluging Settings  Help
P RO Build target:|a|| V|
et & LinPAC_am335%_SDK' examples', common',getexdic
Projects | Symbols Resources 1583 | printf("function : getexdiin™):
= O Workspace 184 | printf("Get digital input value from a serial modulebn'™):
Elq LinPAC AM335z SDE 185 | printf("Usage: getexdi slot 1Wvn"™i:
=" SOHI’CG_S - 186| printcf(™ getexdi slot comport baudrate addresshyn™):
: 187 | printf("Example l:getexdi 2 1%vyn"™):
BB;HPHC_Z{ITL_Q)?)SX_SDK 188 | printf("Get the dec digital input walus frowm the wmodule at =lot 24in");
= examples 189 | printf("Example Z:getexdi O 3 9600 2\n":
B common < | >
B i7k — |
B 87k
B i8k ; i
Code::Blocks Search results Build log 3 ¥ Build messages Debugger
B mysql A Q o q : 3 £ Debuagg e

Er zvboard

Figure 1.3.2-19. Startup the LinPAC AM335x SDK

» Check compiler settings for Linaro GCC cross compiler: Click ‘Settings’” > ‘Compiler’ >

‘Toolchain executables tab’ (Refer to Figure 1.3.2-20):

o

Compiler and debugger settings

Global compiler settings
Selected compiler

\GRU ARM GCC Compiler v]
Set as default [ Copy H Rename ] Delete Reset defallts
Global cormpiler | Lirker settings | Search directories | Toolchain executables || Custom warisbles | ¢

settings Compiler's installation directary
Cr\CygwimLInPAC_AM 335x_SDK\Linaro_30C_4.7\bin [..][ Auto-detect |
MOTE: all programs below, must exist either in the "bin® sub-direc
Program Files | additional Paths
Batch buids C compiler: |arm-|inux-gnueabihf—gcc.exe ‘B
C++ compiler: |arm—linux—gnueabihf—g++.E}{e ‘E]

Linker for dynamic fibs: |arm—linux—gnueabihf—g++.E}{e

Linker for static libs: |arm-linux-gnueabihf—ar.e}{e

Debugger settings

Debugger: |arm—|inux—gnueabihf—gdb.E}{e

Resource compiler: |

Make program:

|make.exe

[ Ok H Cancel ]

Figure 1.3.2-20. Check compiler settings

LinPAC Standard APl Manual version 1.3.1 Page: 27

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



»  Click Build options, and it will compile the LinPAC_AM335x project completely. (Refer to
Figure 1.3.2-21)

a LinPAC am335x SDK\examplesicommonigetexdi.c [LinPAC AM335x SDK] - Code::Blocks 10.05 @

_File Edit ¥iew Search Project | Build | Debug wxSmith Tools Plugins Settings Help

eI - S Build target:[»ﬂ_ vH;

 Management |

— — — ‘LinPAC_am335x_SDK\examples\common\getexdi.c x"

| Projects | Symbols | Resources | 183 | printf("function : getexdiin"):

3 Beich R St eniety R PR : ’ i
= Q Workspace B e e e § R
= ¥ LinPAC_AM335x_SDK ¥ - g ;

58S 186| printf(® getexdi slot comport bhaudrate address\in");
SE nONICes Il 187| printf("Example 1:getexdi 2 1\n");
= @ LmPAC_am335X_SDK; 188| printf(”Get the dec digital input value from the module at slot 2in");
=& examples 189| printf(”Example 2:getexdi 0 3 9600 2\n");
@ & common || RS I | >
® & ik opaares
® B 87k ' - , P i v | :
® .8 i8k l] Code::Blocks ‘ () Search results | £ Build log x| ’.?Bwld messages £ Debugger ‘
# & mysql rm -f ./i8k/denmoB8014W/8014W magic_Blk.o
@ & gvboard arm-linux-gnueabihf-gee -I. -I../include -¢ -o

i8k/demoB8014W/8014W _magic_isr.o i8k/demoB8014W/8014W magic isr.c
arm-linux-gnueabihf-gec -I. -I../include -o ./i8k/demoB8014W/8014W_magic_isr
./18k/deno8014W/8014W_nagic_isr.o ../lib/libi8k.a -lm

rm -f ./i8k/dero8014W/8014W_magic_isr.o |

Process terminated with status 0 (9 minutes, Z7 seconds)

0 errors, 0 warnings

Figure 1.3.2-21. Compiling a C program

[ Note] If you observer some characters may not display properly in cmd.exe, change the code

page for the console only, do the following:

»  Double-click the shortcut icon for the ‘LinPAC_AM335x Build Environment’. (Refer to Figure
1.3.2-22)

| ICPDAS
| LinPAC_AM335x_SDK
=} LinPAC_AM335x Build Environment |
%5 Uninstall LinPAC_AM335x_SDK

Figure 1.3.2-22. Click the ‘LinPAC_AM335x Build Environment’

»  Type command: chcp 65001. (Refer to Figures 1.3.2-23 and 1.3.2-24)

= LinPAC_AM335x Build Environment |l - LinPAC AM335x Build Environment
C:cyguwin“LinPAC_AM335x_SDK>CMD . EXE Active code page: 65801

Kk ciseyguin LinPAC_AM335x_SDKusetenv.bat C:cyguinsLinPAC_AM335x_SDK>

Target :ICPDAS LinPAC AM335x Series

Work Directory: C:cyguin“LinPAC_AM335x_SDKN

C:scyguwinsLinPAC_AM335x_SDK> | chcp 65881

Figure 1.3.2-23. Figure 1.3.2-24.

LinPAC Standard APl Manual version 1.3.1 Page: 28

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



1.3.3. LinPAC X86/E38xx/iMX8MM Series

0 Download/Install LinPAC X86/E38xx SDK on Linux

Here is a simple application for using the LX-8000/9000 SDK.

From https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371, you can

download the latest version of LX-8000/9000 SDK. And then follows the below steps in order to
get the development toolkit which has been provided by ICP DAS for the easy application of the
LX-8000/9000 embedded controller platform.

1. User can connect to LX-8000/9000 through communication port (Console, LAN1, LAN2) by
using ‘putty’ software (refer to “CH2. LX-8000/9000 Getting Started").

2. After connecting to LX-8000/9000, the user could type the following command to get the
latest version of LX-8000/9000 SDK.

# wget https://www.icpdas.com/en/download/file.php?num=1449

[ Note]) Please check the network can connect to the ICP DAS official website.

3. To type ‘tar zxf LinPAC_X86_SDK.tar.gz’ to decompress tar file and type ‘make’ to compile

demo code.

root@icpdas:~# tar zxf LinPAC_X86_SDK.tgz
root@icpdas:~#Is LinPAC_X86_SDK
LinPAC_X86_SDK

root@icpdas:~# cd LinPAC_X86_SDK/
root@icpdas:~/LinPAC_X86_SDK# make

Once user decompresses the SDK file, user can find the files for the library and demo in the

following paths.
The libPAC x86.a path is ‘LinPAC_X86_SDK/lib’.
The include files path is ‘LinPAC_X86_SDK/include’.
The LX-8000/9000 demo path is ‘LinPAC_X86_SDK/examples/Ix-series’.
The LP-8x81/8x81-Atom demo path is ‘LinPAC_X86_SDK/examples/Ip-8x81’.

LinPAC Standard API Manual version 1.3.1 Page: 29

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


https://www.icpdas.com/en/download/show.php?num=904&model=LX-9371

2. System Information Functions

Supported LinPACs

The table below lists the common API of system information functions that are supported by each

LinPAC. For more details, please refer to the corresponding chapters.

Models

LP-2x4x LP-51xx LP-52xx LP-8x2x | LP-8x4x LP-9x2x LX-Series

Functions

Open_Slot

Close_Slot

Open_SlotAll

Close_SlotAll

ChangeToSlot

GetModuleType

sio_open

sio_close

sio_set_noncan

Read_SN

Open_Com

Close_Com

Send_Receive_Cmd

Send_Cmd

Receive_Cmd

Send_Binary

RIS NS IS NS N
RSN NS IS NN

Receive_Binary

GetBackPlanelD

AN NI N N N I N I N I NI NI N I NI N NI N N N N N R N

AN
AN

GetSDKversion

RSN IS NS IS NSNS IS NS IS RSN s

GetSlotCount

AN N NI N A N I N I O NI LI N I N I N N I N B O N I N B N I NI N N
SRINSINISIN NS IS S SN SIS SIS ISR IS I]) N s
SINSINISIN SIS SIS IS IS SIS SIS ]R IS ] S s

AN

GetNameOfModule

AN

GetNameOfModule_9K

LinPAC Standard API Manual version 1.3.1 Page: 30

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Models

Functions LP-51xx LP-8x4x LP-2x4x LP-52xx | LP-8x2x LP-9x2x LX-Series

GetNameOfModule_xw v

GetDIPswitch v v (4
SetLED 4 4 Refer to AM335x SDK /examples/led.c, 4
SetLED_Single or linpac-am335x_user_manual_en.pdf (4
GetRotarylD 4 4 v
rotary_switch_read v v v v
Read_SRAM v
Write_SRAM v
EnableWDT 4 v Refer to AM335x SDK/examples/wdt.c, v
DisableWDT v v or linpac-am335x_user_manual_en.pdf v

Note: LX-Series includes LX-8000 and LX-9000 series.

The table below provides a summary of the various communication functions that can be used

depending on the for the different locations of the I/0 modules when using the ICP DAS modules

in conjunction with the Linux PAC.

API() Open_Slot Close_Slot Open_Com Close_Slot ChangeToSlot sio_open sio_close
1-8K v v
v 4
I-9K RS-422/485 Module
1-87K
4 4 v v v
1-97K
I-7K v v

Note that the Open_slot()/Close_Slot() and sio_open()/sio_close() functions cannot be used for

the same slot.

1/0 type I-8K or I-9K modules I1-87K or 1-97K modules
Function (Parallel Bus) (Serial Bus)

For example |e.g., I-8050W is plug in Slot number 3. | e.g., -87054W is plug in Slot number 3.
Step 1 Open_Slot( ) =>» Open_Slot(3); | Open_Com() =>» Open_Com(1)
Step 2 Close_Slot( ) =>» Close_Slot(3); | Open_Slot(0) =>» Open_Slot(0)
Step 3 ChangeToSlot() | = ChangeToSlot(3)
Step 4 Close_Slot(0) =>» Close_Slot(0)
Step 5 Close_Com() => Close_Com(1)

LinPAC Standard APl Manual

version 1.3.1

Page: 31

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com




2.1. Open_Slot

Description:

This function is used to open and initialize a specific slot on the LinPAC, and will be used by
modules inserted in the LinPAC. For example, to send or receive data from a specific slot, this

function must be called first before any other functions can be used.

Syntax:
[C]
int Open_Slot(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted

Return Values:

0: The slot was successfully initialized.
Other: The initialization failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

int slot=1;

Open_Slot(slot); // The first slot in the LinPAC will be open and initiated.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 32

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.2. Close_Slot

Description:

After using the of Open_Slot() function to open and initialize a specific slot on the LinPAC, the

Close_Slot() function must also be used to close the slot. This function will be used modules

inserted in the LinPAC. For example, the Close_Slot() function should be called after sending or

receiving data from the specified slot.

Syntax:

[C]

void Close_Slot(int slot)

Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
Return Values:

None

Example:

int slot=1;

Close_Slot(slot); // The first slot in the LinPAC will be closed.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard APl Manual version 1.3.1

Page: 33

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.3. Open_SlotAll

Description:

This function is used to open and initialize all slots on the LinPAC. For example, to send or receive
data from multiple slots, this function can be used to simplify the program, and other functions

can be used.

Syntax:

[C]

int Open_SlotAll(void)

Parameter:

None

Return Values:

0: The slot was successfully initialized.
Other: The initialization failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

Open_SlotAll();

// All slots in the LinPAC will be open and initiated.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 34

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.4. Close_SlotAll

Description:

If you the Open_SlotAll() function was used to open and initialize all the slots on the LinPAC, the
Close_SlotAll() function can be used to quickly close them simultaneously. For example, the
Close_SlotAll() function can be called after sending or receiving data from multiple slots to close

all the slots at the same time.

Syntax:

[C]

void Close_SlotAll(void)

Parameter:
None
Return Values:

None

Example:

Close_Slot();

// All slots in the LinPAC will be closed.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 35

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.5. ChangeToSlot

Description:

This function is used to assign serial control to the specified slots for to allow control of the
I-87K/1-97 series. The serial bus on the backplane of the LX-series PAC is used for mapping through
to ttySAO port, and others are COM1 port. For example, to send or receive data from a specified

slot, this function should be called first, and then other series functions can be used.

Syntax:
[C]
void ChangeToSlot(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

None

Example:

int slot=2;
Open_Slot(0);
Open_COM(COM1);
ChangeToSlot(slot);
Close_Com(COM1);
Close_Slot(0);

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 36

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.6. GetModuleType

Description:

This function is used to retrieve which type of I/O module is inserted in a specific I/O slot in the
LinPAC. This function performs a supporting task in the collection of information related to the

system’s hardware configurations.

Syntax:
[C]
int GetModuleType(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted

Return Values:

Module Type: It is defined in the IdTable[] of slot.c.

(Refer to Figure 2.6-1.) Type LD
_PARALLEL 0x80
Example: _Al OxAO
_AO OxA1l
int slot=1; _DI8 0xBO
int moduleType; _Dl16 0xB1
Open_Slot(slot); _DI32 0xB2
printf("GetModuleType= 0x%X \n", GetModuleType(slot)); _DO6 0xCo
_DOS8 0xC1
Close_Slot(slot);
_DO16 0xC2
// The 1-8057W card is inserted in slot 1 of LP-8x4x and has a D032 0xC3
// return Value: 0xC2. _DI4D0O4 0xDO
R K _DI8D08 0xD1
emark: _DI16DO16 0xD2
(1)  The function can't be applied on PAC: LP-2x4x and _MOTION OxE2
LP-525x. _CAN OXFO
Figure 2.6-1
LinPAC Standard API Manual version 1.3.1 Page: 37

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.7. sio_open

Description:

This function is used to open and initiate a specified serial port in the LinPAC. The n-port modules
in the LinPAC will use this function. For example, if you want to send or receive data from a

specified serial port, this function must be called first. Then the other functions can be used later.

Syntax:

[C]
int sio_open(const char *port, speed_t baudrate, tcflag_t data, tcflag_t parity,

tcflag_t stop)

Parameter:

port: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/ttyO4, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] Device name: /dev/ttyS2, /dev/ttyS3.../dev/ttyS34
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1l
baudrate: [Input] B1200/B2400/B4800/B9600/B19200/B38400/B57600/B115200

date: [Input] DATA_BITS_5/DATA_BITS_6/DATA_BITS_7/DATA_BITS_8
parity: [Input] NO_PARITY/ODD_PARITY/EVEN_PARITY
stop: [Input] ONE_STOP_BIT/TWO_STOP_BITS

Return Values:

This function returns int port descriptor for the port opened successfully.

ERR_PORT_OPEN is for Failure.

LinPAC Standard API Manual version 1.3.1 Page: 38

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Example:

#define COM_M1 "/dev/ttyS2" // Defined the first port of 1-8144W in slot 1.
char fd[5];

fd[0]=sio_open(COM_M1, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);
if (fd[0]==ERR_PORT_OPEN) {

printf("open port_m failed!\n");

return (-1);
}

// The I-8114W is inserted in slot 1 and the first port will be open and initiated.
Remark:

(1) The function can be applied for all LinPAC series.

(2) This function can be applied to modules: 1-8114W, [-8112iW, 1-8142iW, 1-8144iW, 1-9114i
and [-9144i.

(3) More detailed information about device node, user can refer to:

LinPAC_SDK\include\sio.h

LinPAC Standard API Manual version 1.3.1 Page: 39

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.8. sio_close

Description:

If you have used the function of sio_open() to open the specified serial port in the LinPAC, you
need to use the sio_close() function to close the specified serial port in the LinPAC. For example,
once you have finished sending or receiving data from a specified serial port, this function would

then need to be called.

Syntax:
[C]
int sio_close(int port)
Parameter:
port: [LP-2x4x/52xx]

[Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty0O4, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]

[Input] Device name: /dev/ttyS2, /dev/ttyS3.../dev/ttyS34

[LX-Series]

[Input] ttySO~ttyS34, ttySAO, ttySA1

Return Values:

None

Example:

#define COM_M2 "/dev/ttyS3" // Defined the second port of 1-8144iW in slot 1.
char fd[5];

fd[0]=sio_open(COM_M2, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);
sio_close (fd[0]);

// The second port of i8144iW in slot 1 will be closed.

LinPAC Standard API Manual version 1.3.1 Page: 40

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Remark:

(1) The function can be applied for all LinPAC series.
(2) This function can be applied on COM port modules.
(3) More detailed information about device node, user can refer to:

LinPAC_SDK\include\sio.h

LinPAC Standard API Manual version 1.3.1 Page: 41

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.9. sio_set_noncan

Description:

If you have used the function of sio_open() to open the specified serial port in the LinPAC, you
need to use the sio_close() function to close the specified serial port in the LinPAC. For example,
once you have finished sending or receiving data from a specified serial port, this function would

then need to be called set a opened serial port to non-canonical mode.

Syntax:
[C]
int sio_set_noncan (int port)
Parameter:
port: [Input] Device name: /dev/ttySO, /dev/ttyS1.../dev/ttyS34

Return Values:

None

Example:

#define COM_M2 "/dev/ttyS1" // Defined the second port for COM3 (RS-232).
char fd[5];

fd[0]=sio_open(COM_M2, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);
sio_set_noncan(fd[0]);

sio_close(fd[0]); // The second port will be closed.

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 42

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.10. Read_SN

Description:

This function is used to retrieves the hardware serial identification number on the LinPAC main

controller. This function supports the control of hardware versions by reading the serial ID chip.

Syntax:

[C]

void Read_SN(unsigned char serial_num(])

Parameter:

serial_num: [Output] Receive the serial ID number

Return Values:

None

Example:

int slot ;

unsigned char serial_num[8];

Open_Slot(0);

Read_SN(serial_num);
printf("SN=%x%x%x%x%x%x%x%x\n",serial_num[0],serial_num[1], serial _num[2]

,serial_num[3],serial_num[4],serial_num[5],serial_num[6],serial_num[7]);
Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 43

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.11. Open_Com

Description:

This function is used to open and configure the COM port, and must be called at least once before

sending/receiving a command via the COM port. For example, to send or receive data from a

specified COM port, this function should be called first, and then other series functions can be

used.

Syntax:

WORD Open_Com(char port, DWORD baudrate, char cData, char cParity, char cStop)

[C]

Parameter:

port:

baudrate:
cDate:
cParity:

cStop:

[LP-2x4x/52xx]

[Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]

[Input] COM1, COM2, COM3..., COM255

[LX-Series]

[Input] ttySO~ttyS34, ttySAO, ttySA1

[Input] 1200/2400/4800/9600/19200/38400/57600/115200
[Input] Data5Bit, Data6Bit, Dat7Bit, Data8Bit

[Input] NonParity, OddParity, EvenParity

[Input] OneStopBit, TwoStopBit

Return Values:

0: The slot was successfully initialized.

Other: The initialization failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 44

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Example:

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

Remark:

(1) The function can be applied for all LinPAC series.

(2) The user can refer to the following information that about COM port for LP-2x4x/52xx.

[LP-2x4x/52xx]

Device Definition in Descriotion Default
name LP-2x4x/52xx SDK P Baud rate

- /dev/ttyO1 or COM1 | Internal communication with the XV-board modules 115200

- Console port RS-232 (RxD, TxD and GND); Non-isolated 115200
ttyO4 | /dev/ttyO4 or COM4 | RS-232 (RxD, TxD and GND);Non-isolated 9600
ttyO2 | /dev/ttyO2 or COM2 | RS-485 (Data+, Data-); Non-isolated 9600
ttyO5 | /dev/ttyO5 or COMS5 | RS-485 (Data+, Data-); 2500 VDC isolated 9600

LinPAC Standard API Manual version 1.3.1 Page: 45

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com




2.12. Close_Com

Description:

This function is used to closes and releases the COM port which has been opened. And it must be
called before exiting the application program. The Open_Com will return error message if the

program exit without calling Close_Com function.

Syntax:
[C]
bool Close_Com(char port)
Parameter:
port: [LP-2x4x/52xx]

[Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]

[Input] COM1,COM2, COM3...COM255

[LX-Series]

[Input] ttySO~ttyS34, ttySAO, ttySA1l

Return Values:

None

Example:

Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 46

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.13. Send_Receive_Cmd

Description:

This function is used to sends a command string to RS-485 network and receives the response

from RS-485 network. If the wChkSum=1, this function automatically adds the two checksum

bytes into the command string and also check the checksum status when receiving response from

the modules. Note that the end of sending string is added [0xOD] to mean the termination of

every command.

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux
) wTimeOut 0.1s
Send_Receive_Cmd()
wT lus
Syntax:
[C]

WORD Send_Receive_Cmd (char port, char szCmd[ ], char szResult[ ], WORD wTimeOut,

WORD wChksum, WORD *wT)

Parameter:
port: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1
szCmd: [Input] Sending command string
szResult: [Input] Receiving the response string from the modules
wTimeOut:  [Input] Communicating timeout setting, the unit=0.1s
wChkSum: [Input] O=Disable, 1=Enable
*wT: [Output] Total time expended in microsecond, the unit=1 us
LinPAC Standard API Manual version 1.3.1 Page: 47

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com




Return Values:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

char m_port =1, m_szSend[40], m_szReceive[40];
DWORD m_baudrate=115200;
WORD m_timeout=30; // the unit=0.1 s
WORD m_chksum=0;
WORD m_wT; // the unit=1 us
int RetVal;
m_szSend[0]='S";
m_szSend[1]='0";
m_szSend[2]='0";
m_szSend[3]='"M’;
m_szSend[4]=0;
/*open device file*/
Open_Slot(1);
RetValue=Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);
if (RetValue>0) {
printf("Open COM%d failed!\n", m_port);
return FAILURE;
}
RetValue=Send_Receive_Cmd(m_port, m_szSend, m_szReceive, m_timeout, m_chksum,
&m_wT);
if (RetValue) {
printf("Module at COM%d Address %d error !!'\n", m_port, m_szSend[2] );
return FAILURE; }

Close_Com(m_port);

LinPAC Standard APl Manual version 1.3.1 Page: 48

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Remark:

(1) The function can be applied for all LinPAC series.

(2) For example, user can refer to LP-52xx SDK, locate the ‘getsendreceive.c’ file in the

C:\cygwin\LP-52xx_SDK\examples\common) folder.

# root@LP-5231:

rootBlLP-523]1:~# | /retsendreceive
function : getzendreceive
mend ASCID command and wait resopnze from a szerial module
Mzage: getzendreceive zlot | timeout command

getezendreceive zlot comport timeont command bavdrate
Exanple l:getzendreceive 2 1 1 "SO0H'
Send command FO0M to the module at zlot 2 and wait rezponze
Exanple 2:getzendreceive 03 1 "S01H' 9600
Send command $0IH to the module at COM3 and wait reszponze
root@LF-523 1~

aot@lE _S03 ] nd | foetzendreceive 0 2 1 '"ROLIH' 9600
10170660
rootPlLF -523 ] ~d

(3) If user want to read or write I-87K modules which is pluggid into a specific 1/0 Slot in
LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,
they were fixed by library.

LinPAC Standard APl Manual version 1.3.1 Page: 49

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.14. Send_Cmd

Description:

This function only sends a command string to DCON series modules. If the wChkSum=1, it

automatically adds the two checksum bytes to the command string. And then the end of sending

string is further added [0xOD] to mean the termination of the command (szCmd). And this

command string cannot include space char within the command string. For example: ‘S01M 02 03’

is user’s command string. However, the actual command send out is ‘SO1M’.

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux
Send_Cmd() wTimeOut 0.1s
Syntax:
[C]
WORD Send_Cmd (char port, char szCmd[ ], WORD wTimeOut, WORD wChksum)
Parameter:
port: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1
szCmd: [Input] Sending command string

wTimeOut:  [Input] Communicating timeout setting, the unit=0.1s

wChkSum: [Input] O=Disable, 1=Enable

Return Values:

None

LinPAC Standard APl Manual

version 1.3.1

Page: 50

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Example:

char m_port=1, m_szSend[40];

DWORD m_baudrate=115200;

WORD m_timeout=50; // the unit=0.1s

WORD m_chksum=0;

m_szSend[0]='S";

m_szSend[1]='0";

m_szSend[2]='0";

m_szSend[3]='"M";

Open_Slot(2); // The module is inserted in slot 2 and address is O.
Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);
Send _Cmd(m_port, m_szSend, m_timeout, m_chksum);

Close_Com(m_port);

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in
LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,
they were fixed by library.

LinPAC Standard APl Manual version 1.3.1 Page: 51

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.15. Receive_Cmd

Description:

This function is used to obtain the responses string from the modules in RS-485 network. And this
function provides a response string without the last byte [0x0D].

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux
Receive_Cmd() wTimeOut 0.1s
Syntax:
[C]
WORD Receive_Cmd (char port, char szResult[ ], WORD wTimeOut, WORD wChksum)
Parameter:
port: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1
szResult: [Output] Sending command string
wTimeOut:  [Input] Communicating timeout setting, the unit=0.1s

wChkSum: [Input] O=Disable, 1=Enable

Return Values:

None

LinPAC Standard API Manual version 1.3.1 Page: 52

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Example:

char m_port=3;

char m_Send[40], m_szResult[40] ;

DWORD m_baudrate=115200;

WORD m_timeout=50; // the unit=0.1s

WORD m_chksum=0;

m_szSend[0]='S";

m_szSend[1]='0";

m_szSend[2]="1";

m_szSend[3]='"M";

m_szSend[4]=0;

Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);
Send _Cmd(m_port, m_szSend, m_timeout, m_chksum);
Receive_Cmd(m_port, m_szResult, m_timeout, m_chksum);
Close_Com(m_port);

// Read the remote module: I-7016D, m_ szResult: ‘1017016D’.

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in
LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,
they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 53

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.16. Send_Binary

Description:

Send out the command string by fix length, which is controlled by the parameter ‘iLen’. The
difference between this function and Send_cmd is that Send_Binary terminates the sending
process by the string length ‘iLen’ instead of the character ‘CR’ (Carry return). Therefore, this
function can send out command string with or without null character under the consideration of
the command length. Besides, because of this function without any error checking mechanism
(Checksum, CRC, LRC... etc.), users have to add the error checking information to the raw data by
themselves if communication checking system is required. Note that this function is usually

applied to communicate with the other device, but not for ICP DAS DCON (I-7000/8000/87K)

series modules.

Syntax:
[C]
WORD Send_Binary (char port, char szCmd[ ], int iLen)
Parameter:
port: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] 1=COM1, 2=COM?2, 3=COM3..., 255=COM255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1l
szCmd: [Input] Sending command string
iLen: [Input] The length of command string

Return Values:

None

LinPAC Standard API Manual version 1.3.1 Page: 54

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Example:

int m_length=4;

char m_port=3, char m_szSend[40];

DWORD m_baudrate=115200;

m_szSend[0]='0";

m_szSend[1]="1";

m_szSend[2]="2";

m_szSend[3]='3";

Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);
Send _Binary(m_port, m_szSend, m_length);

Close_Com(m_port);

Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write I-87K modules which is pluggid into a specific I/O Slot in
LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,
they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 55

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.17. Receive_Binary

Description:

This function is applied to receive the fix length response. The length of the receiving response is
controlled by the parameter ‘iLen’. The difference between this function and Receive_cmd is that
Receive_Binary terminates the receiving process by the string length ‘iLen’ instead of the
character ‘CR’ (Carry return). Therefore, this function can be used to receive the response string
data with or without null character under the consideration of receiving length. Besides, because
of this function without any error checking mechanism (checksum, CRC, LRC... etc.), users have to
remove from the error checking information from the raw data by themselves if communication
checking system is used. Note that this function is usually applied to communicate with the other

device, but not for ICP DAS DCON (I-7000/8000/87K) series modules.

The time-measurement between in Linux platform as follows:

Function Argument Unit on Linux
Receive_Binary() wTimeOut 0.1s
wT lus
Syntax:
[C]
WORD Receive_Binary (char cPort, char szResult[], WORD wTimeOut, WORD wLen,
WORD *wT)
Parameter:
port: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1l
szResult: [Input] Receiving the response string from the modules
LinPAC Standard API Manual version 1.3.1 Page: 56

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



wTimeOut:  [Input] Communicating timeout setting, the unit=0.1s
wlLen: [Input] The length of command string

*wT: [Output] Total time expended in microsecond, unit=1 us

Return Values:

None

Example:

int m_length=10;

char m_port=3, m_szSend[40], m_szReceive[40];

DWORD m_baudrate=115200;

WORD m_wt, m_timeout=10, m_wlength=10; // the unit is 0.1 s for m_timeout
m_szSend[0]='0";

m_szSend[1]="1";

m_szSend[2]='2";

m_szSend[3]='3";

m_szSend[4]="4";

m_szSend[5]='5";

m_szSend[6]='6";

m_szSend[7]='7";

m_szSend[8]='8";

m_szSend[9]='9";

Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit); // Send 10 character
Send _Binary(m_port, m_szSend, m_length); // Receive 10 character.
Receive_Binary( m_port, m_szResult, m_timeout, m_wlength, &m_wt);

Close_Com(m_port);
Remark:

(1) The function can be applied for all LinPAC series.

(2) If user want to read or write 1-87K modules which is pluggid into a specific I/O Slot in
LinPAC, the addresses and baudrate in the LinPAC are 00 and 115200 bps reseparately,
they were fixed by library.

LinPAC Standard API Manual version 1.3.1 Page: 57

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.18. GetBackPlanelD

Description:

This function is used to retrieve the back plane ID number in the LinPAC.

Syntax:

[C]

int GetBackPlanelD()

Parameter:
None

Return Values:
Backplane ID number.

Example:

int id;

id=GetBackPlanelD();
printf("GetBackPlanel =%d \n", id);
// Get the LinPAC backplane id.

Remark:

(1) The function can't be applied on PAC: LP-2x4x and LP-52xx.

LinPAC Standard APl Manual version 1.3.1

Page: 58

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



2.19. GetSDKversion

Description:

This function is used to retrieve the version of LinPAC SDK.

Syntax:

[C]

float GetSDKversion(void)

Parameter:

None
Return Values:
Version number.

Example:

printf(" GetSDKversion=%4.2f \n ", GetSDKversion());
// Get the LinPAC SDK version number.

// Returned Value: GetSDKversion=1.

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard APl Manual version 1.3.1

Page: 59

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



2.20. GetSlotCount

Description:

This function is used to retrieve the number of slot in the LinPAC.

Syntax:

[C]

int GetSlotCount();

Parameter:

None

Return Values:

[LP-8x2x/8x4x/9x2x] Number of slot.
[LX-Series] Number of slot, and add 1.

Example:

int number;

number=GetSlotCount();
printf("GetSlotCount=%d \n", number);
// Get the LinPAC-8841/9821 slot count.

// Returned Value: GetSlotCount=8.

Remark:

(1) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.
(2) Refer to LinPAC_X86_SDK/examples/Ix_8k_9k/common/getlist.c for details of LX-Series

PAC.
Module
LP-8841 LX-9781
Value
API Return value 8 8
Slot number
LinPAC Standard API Manual version 1.3.1 Page: 60

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.21. GetNameOfModule

Description:

This function is used to retrieve the name of an 8000 series I/0 module, which is plugged into a
specific I/O slot in the LP-8000. This function supports the collection of system hardware

configurations.

Syntax:
[C]
int GetNameOfModule(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

I/0 module ID. For Example, the 1-8017W will return 8017.

Example:

int slot=1;

int modulelD;

Open_Slot(slot);

modulelD=GetNameOfModule(slot);

Close_Slot(slot);

// The 1-8017W module is inserted in slot 1 of LP-8x4x.

// Returned Value: moduleName="8017 ‘.

Remark:

(1) The function can't be applied on PAC: LP-2x4x, LP-52xx and LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 61

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.22. GetNameOfModule_9K

Description:

This function is used to retrieve the name of an 9000 series I/0 module, which is plugged into a
specific I/0O slot in the LP-9x21. This function supports the collection of system hardware

configurations.

Syntax:
[C]
int GetNameOfModule_9K(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Values:

I/0 module ID. For Example, the 1-9017 will return 9017.

Example:

int slot=1;

int modulelD;

Open_Slot(slot);
modulelD=GetNameOfModule_9K(slot);
Close_Slot(slot);

// The 1-9017 module is inserted in slot 1 of LP-9x21.

// Returned Value: moduleName="9017 ‘.

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 62

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.23. GetNameOfModule_xw

Description:

This function is used to retrieve the name of an XW-Board series I/0 module, which is plugged

into a slot in the LP-5000. This function supports the collection of system hardware configurations.

Syntax:
[C]
int GetNameOfModule_xw()
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted

Return Value:

I/0 module ID. For Example, the XW107 module will return XW107.

Example:

int slot;

int modulelD;

Open_Slot(1);
modulelD=GetNameOfModule_xw();
Close_Slot(1);

// The X\W107 card plugged in slot 1 of LP-51xx.

// Returned Value: moduleName="XW107’.

Remark:

(1) One LP-5000 can only plug only one XW-board.
(2) The function only for applied on PAC: LP-51xx.

LinPAC Standard API Manual version 1.3.1 Page: 63

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.24. GetDIPswitch

Description:

This function is used to retrieve the DIP switch value in the LinPAC.

Syntax:

[C]

int GetDIPswitch()

Parameter:
None

Return Values:
DIP switch value.

Example:

int value;

value=GetDIPswitch();
printf("GetDIPswitch=%d \n", value);
// Get the LinPAC DIP switch value.

// Returned Value: GetDIPswitch=128.

Remark:

(1) The functioncan be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 64

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.25. SetLED

Description:

This function is used to turn the LinPAC LED’s on/off. Support for LP-51xx, LP-8x4x and LX-Series.

[LP-51xx Series]

Syntax:

[C]

void SetLED(unsigned int addr,unsigned int value)

Parameter:
addr: [Input] Range of programmable LED displayis 1to 5
value: [Input] 1:Turn onthe LED
0: Turn Off the LED LinPAC'SOOO
RUN L2 L1
Address 1 | 13 2 | g | PWR | U o "
Color Green Green Red Green Red |:. I:.
Programmable | Yes Yes Yes Yes No Yes I I I
Function None None None Start | Power | None L4 RUN PWR
Return Values:
None
Example:
unsigned int addr,value;
addr=4;
value=1;
SetLED(addr, value);
// Turn on the LEDA4.
Remark:
LinPAC Standard API Manual version 1.3.1 Page: 65

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



[LP-8x4x Series]

Syntax:
[C]
void SetLED(unsigned int led)
Parameter:
led: [Input] 1:Turn onthe LED ]
0: Turn off the LED LiInPAC-8x4x
Address RUN PWR
Color Red Green
Programmable Yes No i |
Function Start Power RUN PWR

Return Values:
None
Example:

unsigned int led;
led=1;
SetLED(led);

// The LED will turn on in LP-8x4x.

Remark:

LinPAC Standard APl Manual version 1.3.1

Page: 66

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com




[LX-Series]

Syntax:
[C]
void SetLED(unsigned int bFlag)
Parameter:
bFlag : [Input] Select one number to control LED status

There are eight options in below:

1. Led ‘RUN’ ON 2. Led ‘L1’ ON
3. Led ‘RUN" and ‘L1’ ON 4. Led ‘L2’ ON
5. Led ‘RUN’ and ‘L2’ ON 6. Led ‘L1" and ‘L2’ ON
7. All'led ON 8. All led OFF

y Y
Options O O A N P LX-Series
Address

RUN ON | OFF | ON | OFF | ON | OFF | ON | OFF ? ? ?

L1 OFF | ON | ON | OFF | OFF | ON | ON | OFF
RUN L1 L2
L2 OFF | OFF | OFF | ON | ON | ON | ON | OFF \ y

Return Values:

None

Example:

unsigned int option;
scanf("%d",&option);
SetLED(option);

Remark:

(1) Refer to LInPAC_X86_SDK/examples/Ix_8k_9k/common/led.c for more details.

LinPAC Standard API Manual version 1.3.1 Page: 67

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.26. SetLED_Single

Description:

This function is used to turn on/off a single LED. Support for LX-Series.

Syntax:
[C]
void SetLED_Single(char led, char status)
Parameter:
led: [Input] 0:RUN ” ™
. LX-Series
212 ONONO
status: [Input]  0: Turn off the led RlIJN LI1 le
\, p

1: Turn on the led
Return Values:
None

Example:

led = atoi(argv[1]);
status = atoi(argv[2]);

SetLED_Single(led, status);

Remark:

(1) The function only for applied on PAC: LX-Series.
(2) Refer to LInPAC_X86_SDK/examples/Ix_8k_9k/common/led_single.c for more details.

LinPAC Standard API Manual version 1.3.1 Page: 68

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.27. GetRotaryID

Description:

This function is used to retrieve the rotary ID number in the LP-51xx, LP-8x4x and LX-Series.

Syntax:
[C]

int GetRotarylID(int type,& id) // LP-8x4x and LP-51xx

int GetRotarylD(int slot) // LX-Series
Parameter:

type: [Input] Type definition: LP-8x4x is type 1

id: [Output] Rotary switch ID number

slot: [Input] Slot definition: LX-Series is slot 9

Return Values:

0: The slot was successfully initialized.
Other: The initialization failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

int id, slot, type, wRetVal;
type=1; // For LP-8x4x.
wRetVal=0pen_Slot(slot);
if (wRetVal>0) {
printf("open Slot%d failed!\n",slot);
return (-1);}
GetRotaryID(type, &id);
printf("GetRotarylD=%d \n",id);
// Get the LP-8x4x rotary id. If user turn the rotary switch to the 1 position,

// would get the returned value: GetRotarylD=78.

LinPAC Standard API Manual version 1.3.1 Page: 69

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Remark:

(1) The function can be applied on PAC: LP-51xx, LP-8x4x and LX-Series.

(2) Refer to LinPAC_X86_SDK/examples/Ix_8k 9k/common/rotary_sw.c for details of
LX-Series PAC.

(3) The following is the rotary ID number table of LP-8x4x and LP-51xx:
[LP-8x4x]

SW 0 1 2 3 4 5 6 7 8 9
ID 79 |78 |77 |76 | 75 | 74 | 73 | 72 | 71 | 70

[LP-51xx]

SW 0 1 2 3 4 5 6 7 8 9
ID 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38

LinPAC Standard API Manual version 1.3.1 Page: 70

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.28. rotary_switch_read

Description:

This function is used to retrieve the rotary ID number in the LP-2x4x, LP-52xx, LP-8x2x and

LP-9x2x.

Syntax:
[C]
int rotary_switch_read (&value)
Parameter:
value: [Output] Rotary switch ID number

Return Values:

0: The slot was successfully initialized.
Other: The initialization failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Example:

int result=0 ;
unsigned char value=0;
rotary_switch_read(&value);
if(result) {
printf("rsw(%d) : rotary switch read error\n",result);

return FAILURE;

}
else {

printf("%d\n", value); // Get the LP-9x21 rotary id.
}

// If user turn the rotary switch to the 1 position, would get the returned value: 1.

LinPAC Standard API Manual version 1.3.1 Page: 71

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Remark:

(1) The function can't be applied on PAC: LP-51xx, LP-8x4x and LX-Series.
(2) The following is the rotary ID number table of LP-2x4x, LP-52xx, LP-8x2x and LP-9x2x:

Rsw 0 1 2 3 4 5 6 7 8 9

ID 0 1 2 3 4 5 6 7 8 9

LinPAC Standard API Manual version 1.3.1 Page: 72

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.29. Read_SRAM

Description:

This function is used to read mram data in LX-Series PAC.

Syntax:
[C]

unsigned char Read_SRAM(int offset);
Parameter:

offset: [input] Get mram offset address value
Return Values:

Mram value of offset address.
Example:

int offset=0; // Read mram address 0 value.

Open_Slot(0);
Read_SRAM(offset);
Close_Slot(0);

Remark:

(1) The function only for applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1

Page: 73

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



2.30. Write_SRAM

Description:

This function is used to write mram data to LX-Series PAC.

Syntax:
[C]
void Write_SRAM(int offset, unsigned char data);
Parameter:
offset: [input] Mram offset address to write
data: [input] Data you want to write to mram

Return Values:

None

Example:
int offset=0; // Read mram address 0 value.
int data=1;

Open_Slot(0);
Write_ SRAM(offset, data&O0xff);
Close_Slot(0);

Remark:

(1) The function only for applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1

Page: 74

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



2.31. EnableWDT

Description:

This function can be used to enable the watchdog timer (WDT) and users need to reset WDT in

the assigned time set by users. Or LinPAC will reset automatically.

Syntax:
[C]
void EnableWDT(unsigned int mseconds)
Parameter:
mseconds: [Input] LinPAC will reset in the assigned time if users don’t reset WDT

The unit is mini-second

Return Values:

None

Example:

EnableWDT(10000); //Enable WDT interval 10000ms=10s
while (getchar()==10)
{
printf("Refresh WDT\n");
EnableWDT(10000); //Refresh WDT 10s
}
printf("Disable WDT\n");
DisableWDT();

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 75

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.32. DisableWDT

Description:

This function is used to disable WDT.

Syntax:
[C]
void DisableWDT(void)
Parameter:
None
Return Values:
None
Example:
EnableWDT(10000);
while (getchar()==10)
{
printf("Refresh WDT\n");
EnableWDT(10000);
}
printf("Disable WDT\n");
DisableWDT(); // Disable WDT

Remark:

(1)

The function can be applied for all LinPAC series.

LinPAC Standard APl Manual version 1.3.1

Page: 76

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



2.33. WatchDogSWEven

Description:

This function is used to read the LinPAC Reset Condition and users can reinstall the initial value

according to the Reset Condition.

Syntax:

[C]

unsigned int WatchDogSWEven (void)

Parameter:

None

Return Values:

Just see the last number of the return value — RCSR ( Reset Controller Status Register). For

example : RCSR is “20009a4”, so just see the last number “4”. 4 is 0100 in bits and it means:

Bit 0 : Hardware Reset ( Like : Power Off, Reset Button )

Bit 1 : Software Reset ( Like : Type “Reboot” in command prompt )

Bit 2 : WDT Reset ( Like : Use “EnableWDT(1000)” )

Bit 3 : Sleep Mode Reset ( Not supported in the LinPAC)

Example:

printf("RCRS = %x\n", WatchDogSWEven() );

Remark:

(1) The function can be applied for LinPAC PXA270 series.

LinPAC Standard API Manual version 1.3.1 Page: 77

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.34. ClearWDTSWEven

Description:

This function is used to clear RCSR value.

Syntax:
[C]
void ClearWDTSWEven (unsigned int rcsr)
Parameter:
rcsr:  Clear bits of RCSR. Refer to the following parameter setting:
1:clearbit0
2 :clear bit 1
4 : clear bit 2
8 : clear bit 3

F : clear bit O to bit 3
Return Values:
None
Example:
ClearWDTSWEven(0xF); //Used to clear bit O to bit 3 of RCRS to be zero.

Remark:

(1) The function can be applied for LinPAC PXA270 series.

LinPAC Standard API Manual version 1.3.1 Page: 78

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



2.35. RefreshWDT

Description:

This function is used to refresh WDT for Linux AM335x PAC, refer to user manual for detailed.

Syntax:

[C]

void RefreshWDT ()

Parameter:

None

Return Values:

None

Example:

int main(int argc, char **argv)

{
int wdt_en =0, wdt_refresh =0, c, time_sec = 10;
Open_Slot(SLOTO);
while((c=getopt(argc, argyv, "dehrs:")) I=-1) {
switch(c) {
case 'd":
wdt_en =0;
break;
case 'e'":
wdt_en=1;
break;
case 'r'":
RefreshWDT();
Close_Slot(SLOTO);
return SUCCESS;
}
}
}
Remark:

// default 10 secs
// open device file

//refresh watchdog timer

The function can be applied for Linux AM335x PAC series, please download Linux AM335x SDK.

LinPAC Standard APl Manual

version 1.3.1

Page: 79

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



3. Digital Input/Output Functions

Supported LinPACs

The table below lists the common functions of digital input/output modules that are supported by

each LinPAC. For more details, please refer to the corresponding chapters.

1-9K/1-97K Series I-8K/1-87K Series I-8K/I-87K Series XW-board
(High Profile) (Low Profile)

O 1-8000/9000 modules via parallel port

Models
LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x | LX-Series
Functions

DO_8 v v v v
DO_16 v v v v
DO_32 v v v v
ReadDl v v v v
DI_8 v 4 4 v
DI_16 v v v v
DI_32 v 4 4 v
DIO_DO_8 v v v v
DIO_DO_16 v v v v
DIO_DI_8 4 4 4 v
DIO_DI_16 v v v v
DO_8 RB

DO_16_RB

DO_32 RB v 4 4 4
DIO_DO_8 RB,

DIO_DO_16_RB

DO_8 BW

DO _16_BW

DO_32_BW v v v v
DIO_DO_8 BW

DIO_DO _16_BW

LinPAC Standard APl Manual version 1.3.1 Page: 80

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

Functions
DI_8 BW ~ DI_16_BW

v v v v
~ DI_32_BW
UDIO_WriteConfig_16 v v v v
UDIO_ReadConfig_16 v v v v
UDIO_DO16 v v v v
UDIO_Dl16 4 v v v

Note: LX-Series includes LX-8000 and LX-9000 series.

3 1-7000 modules via serial port

Models LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series
Functions

DigitalOut v v v v 4 v v
DigitalBitOut v v v v 4 v v
DigitalOutReadBack 4 4 4 4 v v v
DigitalOut_7016 v v v v 4 v v
Digitalln v v v v v v v
DigitallnLatch 4 4 v v v v v
ClearDigitallnLatch v v v v v v v
DigitalinCounterRead 4 4 4 4 v v v
ClearDigitallnCounter 4 4 v v 4 v v
ReadEventCounter v v v v v v v
ClearEventCounter v v v v v v v
Note: LX-Series includes LX-8000 and LX-9000 series.

LinPAC Standard APl Manual version 1.3.1 Page: 81

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3 1-8000 modules via serial port

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

Functions
DigitalOut_8K v
DigitalBitOut_8K
Digitalln_8K v

DigitalinCounterRead_8K

ClearDigitalInCounter_8K

DigitallnLatch_8K

ClearDigitallnLatch_8K

SISV IS
SIS NSNS

3 1-9000 modules via serial port

LP-2x4x | LP-51xx | LP-52xx LP-8x2x LP-8x4x | LP-9x2x | LX-9000

Functions

DigitalOut_9K

DigitalBitOut_9K

Digitalln_9K

DigitallnCounterRead_9K

ClearDigitallnCounter_9K

DigitallnLatch_9K

ClearDigitallnLatch_9K

SIS|N SN NS

LinPAC Standard APl Manual

version 1.3.1 Page: 82

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com




J 1-87000 modules via serial port

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

Functions

DigitalOut_87K v v v
DigitalOutReadBack_87K v v

DigitalBitOut_87K v v

Digitalln_87K v v v
DigitallnLatch_87K v v
ClearDigitallnLatch_87K v v
DigitallnCounterRead_87K v v
ClearDigitallnCounter_87K v v

LinPAC Standard APl Manual version 1.3.1 Page: 83

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1. For 1-8000/9000 modules via parallel port

3.1.1D0_8

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:
[C]
void DO_8(int slot, unsigned char data)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
data: [Input] Output data

Return Value:

None

Examples:

int slot=1;

unsigned char data=3;
Open_Slot(slot);
DO_8(slot, data);
Close_Slot(slot);

// The 1-8064W is inserted in slot 1 of LinPAC and can turn on channel 0 and 1.

Remark:

(1) This function can be applied on modules: [-8060W, [-8064W, 1-8065, 1-8066, [-8068W,
[-8069W and 1-9064.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 84

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.2D0O_16

Description:

This function is used to output 16-bit data to a digital output module. The 0 to 15 bits of output

data are mapped into the 0 to 15 channels of digital output modules respectively.

Syntax:
[C]
void DO_16(int slot, unsigned int data)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
data: [Input] Output data

Return Value:

None

Examples:

int slot=1;

unsigned int data=3;
Open_Slot(slot);
DO_16(slot, data);
Close_Slot(slot);

// The I-8057W is inserted in slot 1 of LinPAC and can turn on channel 0 and 1.

Remark:

(1) This function can be applied on modules: 1-8037W, 1-8056W, [-8057W, 1-8046W and
[-9057P.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 85

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.3. DO_32

Description:

Output the 32-bit data to a digital output module. The 0 to 31 bits of output data are mapped into

the 0 to 31 channels of digital output modules respectively.

Syntax:
[C]
void DO_32(int slot, unsigned int data)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted
data: [Input] Output data

Return Value:

None

Examples:

int slot=1;

unsigned int data=3;
Open_Slot(slot);
DO_32(slot, data);
Close_Slot(slot);

// The 1-8041W is inserted in slot 1 of LinPAC and can turn on channel 0 and 1.

Remark:

(1) This function can be applied on module: 1-8041W and |-9041P.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 86

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.4 ReadDI

Description:

This function is used to obtain input data from a digital input module, supports 8/16/32-bit digital

input.
Syntax:
[C]
unsigned long ReadDI(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:
Input data.

Examples:

int slot=1;
Open_Slot(slot);
printf("Read DI value: %d\n", ReadDlI(slot));

Close_Slot(slot);

Remark:

(1) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard APl Manual version 1.3.1

Page: 87

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.5DI_8

Description:

Obtains 8-bit input data from a digital input module. The 0 to 7 bits of input data correspond to

the 0 to 7 channels of digital input modules respectively.

Syntax:
[C]
unsigned char DI_8(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

Input data.

Examples:

int slot=1;

unsigned char data;

Open_Slot(slot);

data=DI_8(slot);

Close_Slot(slot);

// The I-8058W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

// Returned value: Data=0xfC.

Remark:

(1) There are two kind of Input type:

Input Type On State Off State Modules
1
LED On, Readback as 1 LED Off, Readback as 0 I1-8058W
(Dry contact)
2 1-8048W, 1-8052W

LED On, Readback as O LED Off, Readback as 1

(Wet contact) 1-9048
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.
LinPAC Standard API Manual version 1.3.1 Page: 88

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.6 DI_16

Description:

This function is used to obtain 16-bit input data from a digital input module. The 0 to 15 bits of

input data correspond to the 0 to 15 channels of digital module’s input respectively.

Syntax:
[C]
unsigned int DI_16(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

Input data.

Examples:

int slot=1;

unsigned int data;

Open_Slot(slot);

data=DI_16(slot);

Close_Slot(slot);

// The I-8053W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

// Returned value: Data=0xfffC.

Remark:

(1) There are two kind of Input type:

Input Type On State Off State Modules
1
LED On, Readback as 1 LED Off, Readback as 0 I-8046W
(Dry contact)
2 [-8051W, I-8053W,

LED On, Readback as O LED Off, Readback as 1

(Wet contact) I-8053PW, [-9053P

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 89

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.7 DI_32

Description:

This function is used to obtain 32-bit input data from a digital input module. The 0 to 31 bits of

input data correspond to the 0 to 31 channels of digital input module respectively.

Syntax:
[C]
unsigned long DI_32(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

Input data.

Examples:

int slot=1;

unsigned long data;

Open_Slot(slot);

data=DI_32(slot);

Close_Slot(slot);

// The I-8040W is inserted in slot 1 of LinPAC and has inputs in channels 0 and 1.
// Returned value: Data=0xfffffffC.

Remark:

(1) Thereis one kind of Input type:

Input Type On State Off State Modules
LED On, Readback as 0 LED Off, Readback as 1 1-8040W, 1-9040P
(Wet contact)

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 90

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.8 DIO_DO_8

Description:

This function is used to output 8-bit data to DIO modules. These modules run 8 digital input
channels and 8 digital output channels simultaneously. The 0 to 7 bits of output data are mapped

onto the 0 to 7 output channels for their specific DIO modules respectively.

Syntax:
[C]
void DIO_DO_8(int slot, unsigned char data)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
data: [Input] Output data

Return Value:

None

Examples:

int slot=1;

unsigned char data=3;

Open_Slot(slot);

DIO_DO_3(slot, data);

Close_Slot(slot);

// The 1-8054W is inserted in slot 1 of LinPAC and can turn on channels 0 and 1.

// 1t not only outputs a value, but also shows 16LEDs.

Remark:

(1) This function can be applied in modules: 1-8054W, 1-8055W and 1-8063W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 91

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.9 DIO_DO_16

Description:

This function is used to output 16-bits of data to DIO modules, which have 16 digital input and 16
digital output channels running simultaneously. The 0 to 15 bits of output data are mapped onto

the 0 to 15 output channels for their specific DIO modules respectively.

Syntax:
[C]
void DIO_DO_16(int slot, unsigned int data)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
data: [Input] Output data

Return Value:

None

Examples:

int slot=1;

unsigned int data=3;

Open_Slot(slot);

DIO_DO_16(slot, data);

Close_Slot(slot);

// The 1-8042W is inserted in slot 1 of LinPAC and can turn on the channels 0 and 1.

// 1t not only outputs a value, but also shows 32LEDs.

Remark:

(1) This function can be applied on modules: I-8042W and I-8050W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 92

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.10 DIO_DI_8

Description:

This function is used to obtain 8-bit data from DIO modules. These modules run 8 digital input and
8 digital output channels simultaneously. The 0 to 7 bits of input data, are mapped onto the 0 to 7

input channels for their specific DIO modules respectively.

Syntax:
[C]
Unsigned char DIO_DI_8(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

Input data.

Examples:

int slot=1;

unsigned char data;

Open_Slot(slot);

data=DIO_DI_38(slot);

Close_Slot(slot);

// The 1-8054W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

// Returned value: Data=0xfC.

Remark:

(1) This function can be applied in modules: [-8054W, 1-8055W and [-8063W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 93

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.11 DIO_DI_16

Description:

This function is used to obtain 16-bit data from DIO modules. These modules run 16 digital input
and 16 digital output channels simultaneously. The 0 to 15 bits of input data are mapped onto the

0 to 15 input channels for their specific DIO modules respectively.

Syntax:
[C]
Unsigned char DIO_DI_16(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

Input data.

Examples:

int slot=1;

unsigned char data;

Open_Slot(slot);

data=DIO_DI_16(slot);

Close_Slot(slot);

// The 1-8042W is inserted in slot 1 of LinPAC and has inputs in channel 0 and 1.

// Returned value: Data=0xfffC.

Remark:

(1) This function can be applied in modules: I-8042W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 94

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.12 DO_8_RB, DO_16_RB, DO_32_RB, DIO_DO_8_RB, DIO_DO_16_RB

Description:
This function is used to Readback all channel status from a Digital Qutput module.

Syntax:

[C]

unsigned char DO_8_RB(int slot)
unsigned int DO_16_RB(int slot)
unsigned long DO_32_RB(int slot)
unsigned char DIO_DO_8_RB(int slot)

unsigned int DIO_DO_16_RB(int slot)

Parameter:

slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

All DO channel status.

Examples:

int slot=1;

Open_Slot(slot);
printf(“%u”,DO_32_RB(slot));
Close_Slot(slot);

// The 1-8041W module is inserted in slot 1 of LinPAC and return all DO channel status.

Remark:

(1) These functions can be applied on modules:
DO 8 channel: I-8060W, I-8064W, I-8065W, 1-8066, 1-8068W and I-8069W.
DO 16 channel: 1-8037W, I-8056W, |-8057W and |-8046W.
DO 32 channel: 1-8041W and 1-9041P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 95

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.13 DO_8_BW, DO_16_BW, DO_32_BW, DIO_DO_8_BW,
DIO_DO_16_BW

Description:

This function is used to output assigned single channel status (ON/OFF) of a Digital Output

module.

Syntax:

[C]
void DO_8_BW(int slot, int bit, int data)
void DO_16_BW (int slot, int bit, int data)
void DO_32_BW (int slot, int bit, int data)
void DIO_DO_8_BW (int slot, int bit, int data)
void DIO_DO_16_BW (int slot, int bit, int data)

Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
bit: [Input] Channel of module
data: [Input] Channel status [on: 1 / off : 0]

Return Value:

None

Examples:

int slot=1, bit=0, data=1;
Open_Slot(slot);

DO_32 BW(slot, bit, data);
Close_Slot(slot);

// The I-8041W module is inserted in slot 1 of LinPAC and just turn on channel 0 of 1-8041W.

LinPAC Standard API Manual version 1.3.1 Page: 96

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Remark:

(1) These functions can be applied on modules:
DO 8 channel: I-8060W, 1-8064W, 1-8065, 1-8066, 1-8068W and I-8069W.
DO 16 channel: I-8037W, 1-8056W and I-8057W.
DO 32 channel: I-8041W and I-9041P.

(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 97

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.14DI_8 BW ~ DI_16_BW -~ DI_32_BW

Description:

This function is used to Readback assigned single channel status (ON/OFF) from a Digital Input

module.
Syntax:
[C]
int DI_8_BW(int slot,int bit)
int DI_16_BW (int slot,int bit)
int DI_32_BW (int slot,int bit)
Parameter:
slot: [Input] Specifies the slot where the I/0 module is inserted
bit: [Input] Channel of module

Return Value:

None

Examples:

int slot=1, bit=0;
Open_Slot(slot);
printf(“DI channel %d = %d\n”, bit, DI_32_BW(slot, bit));  // (0: ON, 1: OFF).
Close_Slot(slot);

// The 1-8040W module is inserted in slot 1 of LinPAC and return channel O status.

Remark:

(1) These functions can be applied on modules:
DI 8 channel: 1-8048W, [-8052W and I-8058W.
DI 16 channel: 1-8051W and 1-8053W.
DI 32 channel: I-8040W and 1-9040P.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 98

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.15 UDIO_WriteConfig_16

Description:

This function is used to configure the channel of the universal DIO module which is digital input or
digital output mode. The universal DIO module can be up to 16 digital input or digital output

channels running simultaneously.

Syntax:
[C]
unsigned short UDIO_WriteConfig_16(int slot, unsigned short config)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
data: [Input] Channel status [DO: 1/Dl: 0]

Return Value:

None

Examples:

int slot=1;

unsigned short config=0xffff;

Open_Slot(slot);

UDIO_WriteConfig_16(slot, config);
Close_Slot(slot);

// WriteConfig: Oxffff (ch 0 to ch15 is DO mode).

Remark:

(1) This function can be applied on modules: I-8050W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 99

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.16 UDIO_ReadConfig_16

Description:

This function is used to read the channels configuration of the universal DIO module which is

digital input or digital output mode.

Syntax:
[C]
unsigned short UDIO_ReadConfig_16(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

None

Examples:

int slot=1;

unsigned int ret;

unsigned short config=0x0000;
Open_Slot(slot);

UDIO_WriteConfig_16(slot, config);
ret=UDIO_ReadConfig_16(slot);

printf(“Read the 1/0 Type is: 0x%04Ix \n\r”,ret);
Close_Slot(slot);

// The I-8050W is inserted in slot 1 of LinPAC.
// WriteConfig: 0x0000 (ch 0 to ch15 is DI mode)
// Read the I/O Type is: 0x0000

Remark:

(1) This function can be applied on modules: I-8050W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 100

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.17 UDIO_DO16

Description:

This function is used to output O to 15 bits data to a universal DIO module according to the
channel configuration. The 0 to 15 bits of output data are mapped onto the 0 to 15 output

channels for their specific universal DIO modules respectively.

Syntax:
[C]
void UDIO_DO16(int slot, unsigned short config)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
data: [Input] Output data

Return Value:

None

Examples:

int slot=1; // The 1-8050W is inserted in slot 1 of LinPAC.
unsigned int data;

unsigned short config =0x00ff;

Open_Slot(slot);

UDIO_WriteConfig_16(slot, config);

scanf(“%d:”,&data);

UDIO_DO16(slot, data);

printf(“DO(ChO to Ch7) of I-8050 in Slot %d=0x%x\n\r”,slot, data);
Close_Slot(slot);

// WriteConfig: 0x00ff (chO to ch7 is DO mode and ch8 to ch15 is DI mode).
// Input DO value: 255. DO(ChO to Ch7) of 1-8050 in Slot 1=0xff.

Remark:

(1) This function can be applied on modules: 1-8050W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 101

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.18 UDIO_DI16

Description:

This function is used to input 0 to 15 bits data to a universal DIO module according to the channel
configuration. The 0 to 15 bits of input data are mapped onto the 0 to 15 input channels for their

specific universal DIO modules respectively.

Syntax:

[C]

unsigned short UDIO_DI16(int slot)

Parameter:

slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

None

Examples:

int slot=1; // The 1-8050W is inserted in slot 1 of LinPAC.
unsigned int data;

unsigned short config =0xff00;

Open_Slot(slot);

UDIO_WriteConfig_16(slot, config);

data=UDIO_DI16(slot);  // DI(ChO to Ch7) of I-8055 in Slot 1=0xfbff.
printf(“DI(ChO to Ch7) of 1-8055 in Slot %d=0x%x\n\r",slot, data);
scanf(“%d:”,&data);

UDIO_DO16(slot, data); // Input DO value: 255. DO(Ch8 to Ch15) of 1-8050 in Slot 1=0xff.
printf(“DO(Ch8 to Ch15) of I1-8050 in Slot %d=0x%x\n\r",slot, data);
Close_Slot(slot);

// WriteConfig: 0xff00 (chO to ch7 is DI mode and ch8 to ch15 is DO mode).

Remark:

(1) This function can be applied on modules: I1-8050W.
(2) The function can't be applied on PAC: LP-2x4x, LP-51xx and LP-52xx.

LinPAC Standard API Manual version 1.3.1 Page: 102

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.19 ReadDI_LPF

Description:

This function is used to obtain response value from a Low Pass Filter module.

Syntax:
[C]
short ReadDI_LPF (int slot, DWORD *Ipf_Value, int type)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
Ipf_Value: [Output] Response time for Low Pass Filter
type: [Input] Low Pass Filter Selection:

1. Setting by Hardware(Oms/1ms/5ms/10ms/20ms/40ms/70ms by Jumper select)

2. Setting by Software (Set Jumper position to CPU)

Return Value:

Low Pass Filter data.

Examples:

int RetValue, slot, type;
DWORD read_Ipf Value;

Open_Slot(slot);

RetValue= ReadDI_LPF(slot, &read_lpf Value, type); // type: 0 --> Hardware, 1 --> Software
printf("ReadDI_LPF Value: Response time = %d ms \n", read_Ipf Value);

Close_Slot(slot);

Remark:

(1) This function can be applied on modules: 1-9053P.

(2) Here is the result of demo — 9053 _Ipf.exe

root@icpdas:~# ./9053 1pf 1 0 90
ReadDI LPF Value:
Response time = 70 ms

If you would like to setup LPF by software, please input <type> parameter = 1
root@icpdas:~#

LinPAC Standard APl Manual version 1.3.1 Page: 103

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.1.20 WriteDI_LPF

Description:

This function is used to configure the Low Pass Filter value which range is 0 ~ 100 ms.

Syntax:
[C]
short WriteDI_LPF (int slot, DWORD *Ipf_Value)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Ipf_Value: [Input] Output response time for Low Pass Filter (Range: 0~ 100 ms)

Return Value:

0: The function was successfully processed.

Other: The processing failed. Refer to ‘Error Code Definitions’ for details of other returned

values.
Examples: cru @D « setting by Software
Reserve (D (Jumper cap in here)
int RetValue, slot; Reserve |
: 7oms | D
DWORD write_Ipf Value;
LB aoms |
Open_Slot(slot); 20ms | D
RetValue=WriteDI_LPF(slot, write_Ipf_Value); 1oms | €D
5ms m
printf("WriteDI_LPF = %d ms \n", write_Ipf_Value); 1ms |
Close_Slot(slot); Disable |CED
Remark:
(1) If you would like to setup LPF by software, it is LPF
) ] . >>> WriteDI LPF
necessary to move the jumper cap into CPU position. ReadDI_LPF Vi
(2) This function can be applied on modules: 1-9053P. oot@icpda
icpdas:
root@icpdas:~#
LinPAC Standard APl Manual version 1.3.1 Page: 104

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.2. For1-7000/1-8000/1-9000/1-87000 modules via serial
port

3.2.1. 1-7000 series modules

LinPAC Standard APl Manual version 1.3.1 Page: 105

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalOut

Description:

This function is used to output the value of the digital output module for I-7000 series modules.

Syntax:
[C]
WORD DigitalOut(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty0O4, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7011/12/14/42/43/44/50/60/63/65/66/67/80
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] 16-bit digital output data
wBuUf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 106

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80], szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3, m_address=1;

WORD m_timeout=50, m_checksum=0; // the unit is 0.1 s for m_timeout
Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7050;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0x0f; // 8 DO Channels On.

wBuf[6]=0;

DigitalOut(wBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 107

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalBitOut

Description:

This function is used to set digital output value of the channel No. of 1-7000 series modules. The

output value is ‘0’ or ‘1.

Syntax:
[C]
WORD DigitalBitOut(WORD wBuf[ ],float fBuf[ ],char szSend[ ],char szReceive[ ])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty0O4, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7042/43/44/50/60/63/65/66/67
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: Not used
wBuUf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
wBuUf[7]: [Input] The digital output channel No.
wBuf[8]: [Input] Logic value (0 or 1)
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 108

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7065;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=0;

wBuf[7]=0x08; //RL4 relay On.

wBuf[8]=1;

DigitalBitOut(wBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard APl Manual version 1.3.1 Page: 109

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalOutReadBack

Description:

This function is used to read back the digital output value of I-7000 series modules.

Syntax:
[C]
WORD DigitalOutReadBack(WORD wBuf[ ], float fBuf[ ], char szSend[ ], char szReceive[ ])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] COM port number, from 1 to 255
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7042/43/44/50/60/63/65/66/67/80
wBUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Output] 16-bit digital output data read back
wBuf[6]: [Input] 0 - no save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 110

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD DO;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7050;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=0;

DigitalOutReadBack(wBuf, fBuf, szSend, szReceive);
DO=wBUuf[5];

Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 111

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalOut_7016

Description:

This function is used to set the digital output value of the specified channel No. of I-7016 module.
If the parameter of wBuf[7] is ‘0’, it means to output the digital value through BitO and Bit1 digital
output channels. If wBuf[7] is ‘1’, it means to output the digital value through Bit2 and Bit3 digital

output channels.

Syntax:
[C]
WORD DigitalOut_7016(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] COM port number, from 1 to 255
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuUf[2]: [Input] Module ID, 0x7016
wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBuf[5]: [Input] 2-bit digital output data in decimal format
wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
wBuUf[7]: [Input] 0 -> BitO, Bitl output
1 - Bit2, Bit3 output
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from I-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 112

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7016;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=1;

wBuf[6]=0;

wBuf[7]=1; // Set the Bit2, Bit3 digital output.
DigitalOut_7016(wBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 113

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B Digitalin

Description:

This function is used to obtain the digital input value from [-7000 series modules.

Syntax:
[C]
WORD Digitalin(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7041/44/50/52/53/55/58/60/63/65
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Output] 16-bit digital output data
wBuf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 114

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD DI;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7050;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=0;

Digitalln(wBuf, fBuf, szSend, szReceive);
DI=wBuf[5];

Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 115

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinLatch

Description:

This function is used to obtain the latch value of the high or low latch mode of the I-7000 digital

input module.

Syntax:
[C]
WORD DigitalinLatch(WORD wBuf[], float fBuf[], char szSend[], char szReceive([])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7041/44/50/52/53/55/58/60/63/65/66
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] O: low Latch mode; 1: high Latch mode
wBuf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
wBuf[7]: [Output] Latch value
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from I-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 116

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port ;

wBuf[1]=m_address ;

wBuf[2]=0x7050;

wBuf[3]=m_checksum ;

wBuf[4]=m_timeout ;

wBuf[5]=1; // Set the high Latch mode.
wBuf[6]=0;

wBuf[7]=0x03; // Set the Latch value.
DigitallnLatch(wBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 117

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinLatch

Description:

This function is used to clear the latch status of I1-7000 digital input module when latch function

has been enabling.

Syntax:
[C]
WORD ClearDigitallnLatch(WORD wBuf{], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7011/12/14/42/43/44/50/55/58/60/63/65/66/67
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: Not used
WBUuf[6] : [Input] 0 = no save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 118

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=20; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7050;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=0;

ClearDigitallnLatch(wBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 119

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinCounterRead

Description:

This function is used to obtain the counter event value of the channel number of the 1-7000 digital

input module.

Syntax:
[C]
WORD DigitalinCounterRead(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7041/44/50/51/52/53/55/58/60/63/65
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] The digital input channel No.
wBuUf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
wBuUf[7]: [Output] Counter value of the digital input channel No.
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from I-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 120

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD DI_counter;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7050;

wBuf[3]=m_checksum;

wBuf[4]=100;

wBuf[5]=0; // Set the digital input channel No.
wBuf[6]=0;

DigitallnCounterRead(wBuf, fBuf, szSend, szReceive);
DI_counter=wBuf[7];

Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 121

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinCounter

Description:

This function is used to clear the counter value of the channel number of the I-7000 digital input

module.
Syntax:
[C]
WORD ClearDigitalinCounter(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7041/44/50/51/52/53/55/58/60/63/65
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] The digital input channel No.
wBuUf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 122

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7050;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0; // Set the digital input channel No.
wBuf[6]=0;

ClearDigitallnCounter(wBuf, fBuf, szSend, szReceive);

Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 123

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadEventCounter

Description:

This function is used to obtain the value of event counter of I-7000 series modules. This function

only supports I-7011, 1-7012, 1-7014 and I-7016 modules.

Syntax:
[C]
WORD ReadEventCounter(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7011/12/14/16
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: Not used
wBuUf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
wBuf[7]: [Output] The value of event counter
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from I-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 124

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD Counter;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7012;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=0;

ReadEventCounter(wBuf, fBuf, szSend, szReceive);
Counter=wBuf[7];

Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 125

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearEventCounter

Description:

This function is used to clear the value of event counter of 1-7000 series modules. This function

only supports I-7011, 1-7012, 1-7014 and I-7016 modules.

Syntax:

WORD ClearEventCounter(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

[C]

Parameter:

wBuf:

wBuUf[0]:

wBuUf[1]:
wBuUf[2]:
wBuUf[3]:
wBuf[4]:
wBUf[5]:
wBuUf[6]:

fBuf:
szSend:

szReceive:

Return Value:

WORD Input/Output argument table
[LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x7011/12/14/16
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
Not used
[Input] 0 - no save to szSend & szReceive
1 - Save to szSend & szReceive
Not used
[Input] Command string to be sent to I-7000 series modules

[Output] Result string receiving from [-7000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 126

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7012;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=0;

ClearEventCounter(wBuf, fBuf, szSend, szReceive);

Close_Com(COM3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 127

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.2.2. 1-8000 series modules

B DigitalOut_8K

Description:

This function is used to set the digital output value of digital output module for 1-8000 series

modules.
Syntax:
[C]
WORD DigitalOut_8K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
dwBuf: WORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x8041/42/54/55/56/57/60/63/64/65/66/68
dwBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] 16-bit digital output data
dwBuf[6]: [Input] 0 - No save to szSend & szReceive
1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

fBuf: Not used
szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from 1-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 128

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8041;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=10; // Digital output.

dwBuf[6]=0;

dwBuf[7]=m_slot;

DigitalOut_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard API Manual version 1.3.1 Page: 129

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalBitOut_8K

Description:

This function is used to set the digital value of the digital output channel No. of 1-8000 series

modules. The output value is ‘0" or ‘1’.

Syntax:
[C]
WORD DigitalBitOut_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x8041/42/54/55/56/57/60/63/64/65/66/68
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] 16-bit digital output data
dwBuf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
dwBuUf[7]: [Input] Slot number; the I/O0 module installed in 1-8000 main unit

dwBuUf[8]: [Input] The output channel No.

fBuf: Not used
szSend: [Input] Command string to be sent to I-8000 series modules
szReceive: [Output] Result string receiving from [-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 130

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8041;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=10; // Digital output.
dwBuf[6]=0;

dwBuf[7]=m_slot;

dwBuf[8]=3;

DigitalBitOut_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 131

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B Digitalin_8K

Description:

This function is used to obtain the digital input value from I-8000 series modules.

Syntax:

[C]

WORD Digitalin_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuUf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x8040/42/51/52/54/55/58/63
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Output] 16-bit digital output data
[Input] 0 = no save to szSend & szReceive
1 - Save to szSend & szReceive
[Input] Slot number; the I/0 module installed in 1-8000 main unit
Not used
[Input] Command string to be sent to 1-8000 series modules

[Output] Result string receiving from 1-8000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 132

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8040;

dwBuf[3]=m_checksum;
dwBuf[4]=m_timeout;

dwBuf[5]=10; // Digital output.
dwBuf[6]=0;

dwBuf[7]=m_slot;

Digitalln_8K(dwBuf, fBuf, szSend, szReceive);
DI=dwBuf[5];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard APl Manual version 1.3.1 Page: 133

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinCounterRead_8K

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]
WORD DigitalinCounterRead_8K(DWORD dwBuf{],float fBuf[],char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] Channel No.
dwBuf[6]: [Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

dwBuUf[8]: [Output] Digitalln counter value

fBuf: Not used

szSend: [Input] Command string to be sent to I-8000 series modules
szReceive: [Output] Result string receiving from [-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

LinPAC Standard APl Manual version 1.3.1 Page: 134

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI_counter;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;
DigitallnCounterRead_8K(dwBuf, fBuf, szSend, szReceive);
DI_counter=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 135

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinCounter_8K

Description:

This function is used to clear the counter value of the digital input channel No. of 1-8000 series

modules.

Syntax:

[C]
WORD ClearDigitalinCounter_8K(DWORD dwBuf{],float fBuf[],char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] Channel No.
dwBuf[6]: [Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

fBuf: Not used
szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from 1-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 136

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s

DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;

ClearDigitalinCounter_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 137

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinLatch_8K

Description:

This function is used to obtain the digital input latch value of the high or low latch mode of 1-8000

series modules.

Syntax:
[C]
WORD DigitallnLatch_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x8040/51/52/53/54/55/58/63
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] 0 > select to latch low
1 - select to latch high
dwBuf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
dwBuUf[7]: [Input] Slot number; the I/0 module installed in I-8000 main unit

dwBuUf[8]: [Output] Latched data

fBuf: Not used
szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from 1-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 138

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI_latch;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;

DigitallnLatch_8K(dwBuf, fBuf, szSend, szReceive);
DI_latch=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 139

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinLatch_8K

Description:

This function is used to clean the latch status of digital input module when latch function has been

enabled.

Syntax:

WORD ClearDigitalinLatch_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x8040/51/52/53/54/55/58/63
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
Not used
[Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
[Input] Slot number; the I/0 module installed in 1-8000 main unit
Not used
[Input] Command string to be sent to 1-8000 series modules

[Output] Result string receiving from 1-8000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 140

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuUf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;

ClearDigitallnLatch_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 141

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.2.3. 1-9000 series modules

B DigitalOut_9K

Description:

This function is used to set the digital output value of digital output module for 1-9000 series

modules.
Syntax:
[C]
WORD DigitalOut_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: WORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x9041/57/64
dwBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] 16-bit digital output data
dwBuf[6]: [Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

fBuf: Not used
szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 142

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9041;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=10; // Digital output.

dwBuf[6]=0;

dwBuf[7]=m_slot;

DigitalOut_9K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard APl Manual version 1.3.1 Page: 143

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalBitOut_9K

Description:

This function is used to set the digital value of the digital output channel No. of 1-9000 series

modules. The output value is ‘0" or ‘1".

Syntax:
[C]
WORD DigitalBitOut_9K(DWORD dwBuf(], float fBuf[], char szSend[], char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x9041/57/64
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] 16-bit digital output data
dwBuf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
dwBuUf[7]: [Input] Slot number; the I/O0 module installed in 1-8000 main unit

dwBuUf[8]: [Input] The output channel No.

fBuf: Not used
szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 144

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9041;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=10; // Digital output.
dwBuf[6]=0;

dwBuf[7]=m_slot;

dwBuf[8]=3;

DigitalBitOut_9K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 145

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B Digitalin_9K

Description:

This function is used to obtain the digital input value from 1-9000 series modules.

Syntax:

[C]

WORD Digitalin_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuUf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x9040
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Output] 16-bit digital output data
[Input] 0 = no save to szSend & szReceive
1 - Save to szSend & szReceive
[Input] Slot number; the I/0 module installed in 1-8000 main unit
Not used
[Input] Command string to be sent to 1-9000 series modules

[Output] Result string receiving from 1-9000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 146

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9040;

dwBuf[3]=m_checksum;
dwBuf[4]=m_timeout;

dwBuf[5]=10; // Digital output.
dwBuf[6]=0;

dwBuf[7]=m_slot;

Digitalln_9K(dwBuf, fBuf, szSend, szReceive);
DI=dwBuf[5];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard APl Manual version 1.3.1 Page: 147

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinCounterRead_9K

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]
WORD DigitalinCounterRead_9K(DWORD dwBuf{],float fBuf[],char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x9040/53
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] Channel No.
dwBuf[6]: [Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

dwBuUf[8]: [Output] Digitalln counter value

fBuf: Not used

szSend: [Input] Command string to be sent to I1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 148

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI_counter;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

dwBuf[0]=m_port;
dwBuf[1]=m_address;
dwBuf[2]=0x9040;
dwBuf[3]=m_checksum;
dwBuf[4]=m_timeout;
dwBuf[5]=0;
dwBuf[6]=0;

dwBuf[7]=m_slot;

DigitallnCounterRead_9K(dwBuf, fBuf, szSend, szReceive);

DI_counter=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1

Page: 149

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



B ClearDigitalinCounter_9K

Description:

This function is used to clear the counter value of the digital input channel No. of I-9000 series

modules.

Syntax:

[C]
WORD ClearDigitalinCounter_9K(DWORD dwBuf(],float fBuf[],char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x9040/53
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] Channel No.
dwBuf[6]: [Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

fBuf: Not used
szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 150

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;

ClearDigitallnCounter_9K(dwBuf, fBuf, szSend, szReceive);

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 151

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinLatch_9K

Description:

This function is used to obtain the digital input latch value of the high or low latch mode of 1-9000

series modules.

Syntax:
[C]
WORD DigitallnLatch_9K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x9040/53
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] 0 > select to latch low
1 - select to latch high
dwBuf[6]: [Input] 0 > no save to szSend & szReceive
1 - Save to szSend & szReceive
dwBuUf[7]: [Input] Slot number; the I/0O module installed in 1-8000 main unit

dwBuUf[8]: [Output] Latched data

fBuf: Not used
szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 152

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI_latch;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;

DigitallnLatch_9K(dwBuf, fBuf, szSend, szReceive);
DI_latch=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 153

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinLatch_9K

Description:

This function is used to clean the latch status of digital input module when latch function has been

enabled.
Syntax:
[C]
WORD ClearDigitalinLatch_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x9040/53
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: Not used
dwBuf[6]: [Input] 0 > no save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number; the I/0 module installed in 1-8000 main unit

fBuf: Not used
szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 154

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9040;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=0;

dwBuf[7]=m_slot;

ClearDigitallnLatch_9K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 155

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



3.2.4. 1-87000 series modules

B DigitalOut_87K

Description:

This function is used to set the digital output value of the digital output module for 1-87000 series

modules.

Syntax:

WORD DigitalOut_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuUf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuUf[6]:

fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87041/54/55/57/58/63/64/66/68
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] 16-bit digital output data
[Input] 0 = no save to szSend & szReceive
1 - Save to szSend & szReceive
Not used
[Input] Command string to be sent to I-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 156

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuUf[2]=0x87054;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuUf[5]=3;

dwBuf[6]=0;

DigitalOut_87K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 157

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalOutReadBack_87K

Description:

This function is used to read back the digital output value of the digital output module for [-87000

series modules.

Syntax:

WORD DigitalOutReadBack_87K(DWORD dwBuf{],float fBuf[],char szSend[],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuf[6]:

fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87041/54/55/57/58/63/64/66/68
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Output] 16-bit digital output data
[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
Not used
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from 1-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 158

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DO;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87054;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=0;

DigitalOutReadBack_87K(dwBuf, fBuf, szSend, szReceive);
DO=dwBuf[5];

Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 159

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalBitOut_87K

Description:

This function is used to set the digital output value of the specific digital output channel No. of the

digital output module for I-87000 series modules. The output value is only for ‘0’ or ‘1’.

Syntax:

WORD DigitalBitOut_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuUf[6]:

dwBuUf[7]:
dwBuUf[8]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87041/54/55/57/58/63/64/66/68
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] 1-bit digital output data
[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
[Input] The digital output channel No.
[Input] Data to output (0 or 1)
Not used
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from 1-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 160

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuUf[2]=0x87054;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=0;

dwBuf[7]=1;

dwBuf[8]=1;

DigitalBitOut_87K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 161

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B Digitalin_87K

Description:

This function is used to obtain the digital input value from I-87000 series modules.

Syntax:

[C]

WORD Digitalin_87K(DWORD dwBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87040/51/52/53/54/55/58/63
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Output] 16-bit digital input data
[Input] 0 - No save to szSend & szReceive
1 - Save to szSend & szReceive
Not used
[Input] Command string to be sent to I-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 162

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87054;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=0;

Digitalln_87K(dwBuf, fBuf, szSend, szReceive);
DI=dwBuf[5];

Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 163

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinLatch_87K

Description:

This function is used to obtain the digital input latch value of the high or low latch mode of

I1-87000 series modules.

Syntax:
[C]
WORD DigitallinLatch_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] O: low latch mode, 1: high latch mode
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Output] Latch value

fBuf: Not used
szSend: [Input] Command string to be sent to I-87000 series modules
szReceive: [Output] Result string receiving from [-87000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 164

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI_latch;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87051;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuUf[5]=1;

dwBuf[6]=0;

DigitallnLatch_87K(dwBuf, fBuf, szSend, szReceive);
DI_latch=dwBuf[7];

Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 165

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinLatch_87K

Description:

This function is used to output 8-bit data to a digital output module. The 0 to 7 bits of output data

are mapped into the 0 to 7 channels of digital module output respectively.

Syntax:

[C]
WORD ClearDigitallnLatch_87K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:
dwBuf: DWORD Input/Output argument table
dwBuf[0]: [Input] COM port number, from 1 to 255

dwBuUf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x87040/51/52/53/54/55/58/63
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuf[4]: [Input] Timeout setting, the unit=0.1s

dwBUf[5]: Not used

dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Not used
szSend: [Input] Command string to be sent to I-87000 series modules
szReceive: [Output] Result string receiving from [-87000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 166

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87051;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=0;

ClearDigitallnLatch_87K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 167

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B DigitalinCounterRead_87K

Description:

This function is used to obtain the counter value of the digital input channel No. of 1-87000 series

modules.

Syntax:

WORD DigitallnCounterRead_87K(DWORD dwBuf[],float fBuf[],char szSend[],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuf[6]:

dwBuUf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87040/51/52/53/54/55/58/63
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The digital input channel No.
[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
[Output] Counter value of the digital input channel No.
Not used
[Input] Command string to be sent to I-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 168

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend[80];

char szReceive[80];

float fBuf[12];

DWORD DI_counter;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87051;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuUf[5]=1;

dwBuf[6]=0;

DigitalinCounterRead_87K(dwBuf, fBuf, szSend, szReceive);
DI_counter=dwBuf[7];

Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 169

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ClearDigitalinCounter_87K

Description:

This function is used to clear the counter value of the digital input channel No. of [-87000 series

modules.

Syntax:

WORD ClearDigitalinCounter_87K(DWORD dwBuf[],float fBuf[],char szSend[],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuUf[6]:

fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87040/51/52/53/54/55/58/63
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The digital input channel No.
[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
Not used
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 170

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

char szSend [80];

char szReceive [80];

float fBuf [12];

DWORD dwBuf [12];

DWORD m_port=3;

DWORD m_slot=1;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM1,115200, Data8Bit, NonParity, OneStopBit);
dwBuf [0]=m_port;

dwBuf [1]=m_address;

dwBuf [2]=0x87051;

dwBuf [3]=m_checksum;

dwBuf [4]=m_timeout;

dwBuf [5]=1;

dwBuf [6]=0;

ClearDigitalinCounter_87K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM1);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 171

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4. Analog Input Functions

Supported LinPACs

The table below lists the common functions of analog input modules that are supported by each

LinPAC. For more details, please refer to the corresponding chapters.

(3 1-8000/9000 modules via parallel port
About special applications of API function for I-8000/9000 modules, please visit to

v |-9K Series I/0 Module v 1-8K Series I/O Modules

Note: For more details about old version 1-8017 API, please refer to Appendix C1.

3 1-7000 modules via serial port

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series

Functions
Analogln v v v v 4 4 4
AnaloglnHex v v v v v v
AnaloglInFsr v 4 v v v v
AnaloglnAll v v v v v v
ThermocoupleOpen_7011 4 4 v v v v
SetLedDisplay 4 4 v v v v
GetlLedDisplay 4 4 4 4 v v

Note: LX-Series includes LX-8000 and LX-9000 series.

3 1-8000 modules via serial port

Models
LP-2x4x  LP-51xx  LP-52xx  LP-8x2x  LP-8x4x  LP-9x2x LX-8000
Functions

Analogin_8K 4 (4 v
AnaloginHex_8K v v
AnalogInFsr_8K v v
AnalogInAll_8K 4 v
LinPAC Standard API Manual version 1.3.1 Page: 172

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


https://www.icpdas.com/en/download/show.php?num=2775&nation=US&kind1=6&kind2=8&model=i-9017&kw=
https://www.icpdas.com/en/download/show.php?num=1869&nation=US&kind1=6&kind2=8&model=I-8014W-G&kw=

3 1-9000 modules via serial port

Models

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x  LX-9000

Functions

Analogin_9K

AnaloglnHex_9K

AnalogInFsr_9K

SIS |N (S

AnaloglInAll_9K

3 1-87000 modules via serial port

Models

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x  LX-8000

Functions

Analogin_87K

AnaloginHex_87K

AnalogInFsr_87K

SISIN S
SIS N S

AnalogInAll_87K

3 1-97000 modules via serial port

Models

LP-2x4x | LP-51xx LP-8x2x  LP-8x4x  LP-9x2x  LX-9000

Functions

Analogln_97K

AnaloglnHex_97K

AnalogInFsr_97K

SIS (S

AnalogInAll_97K

LinPAC Standard APl Manual version 1.3.1 Page: 173

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4.1. 1-7000 series modules

B Analogin

Description:

This function is used to obtain input value form 1-7000 series modules.

Syntax:
[C]
WORD Analoglin (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] COM port number, from 1 to 255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1l
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33
wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBuf[5]: [Input] Channel number for multi-channel
wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Float Input/Output argument table
fBuf[O]: [Output] Analog input value return
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from 1-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 174

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Note: ‘wBuf[6]’ is the debug setting. If this parameter is set as ‘1’, user can get whole

command string and result string from szSend[] and szReceive[] respectively.

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7016;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;

wBuf[6]=1;

AnalogIn(wBuf, fBuf, szSend, szReceive); // szSend="#02", szReceive=">+001.9”.
Al=fBuf[0]; // Al=1.9.

Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard APl Manual version 1.3.1 Page: 175

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginHex

Description:

This function is used to obtain the analog input value in ‘Hexadecimal’ form I-7000 series modules.

Syntax:
[C]
WORD AnalogIinHex (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:

wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]

[Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)

[LP-51xx/8x2x/8x4x/9%2x]

[Input] COM port number, from 1 to 255
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33
wBUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] Channel number for multi-channel
wBuUf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

wBuf[7]: [Output] The analog input value in ‘Hexadecimal’ format
fBuf: Not used
szSend: [Input] Command string to be sent to 1-7000 series modules
szReceive: [Output] Result string receiving from 1-7000 series modules

Note: Users have to use DCON utility to set up the analog input configuration of the module

in hex format.

LinPAC Standard API Manual version 1.3.1 Page: 176

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=10; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7012;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;

wBuf[6]=1;

AnaloglnHex(wBuf, fBuf, szSend, szReceive);
Al=wBuf[7]; // Hex format.
Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 177

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloglInFsr

Description:

This function is used to obtain the analog input value in ‘FSR’ format form 1-7000 series modules.

The ‘FSR’ means ‘Percent’ format.

Syntax:
[C]
WORD AnaloglInFsr (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:

wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]

[Input] COM1, COM2, COM4, COM5

(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)

[LP-51xx/8x2x/8x4x/9%2x]

[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] Channel number for multi-channel
wBuUf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table
fBuf[O]: [Output] Analog input value return
szSend: [Input] Command string to be sent to 1-7000 series modules
szReceive: [Output] Result string receiving from 1-7000 series modules

Note: Users have to use DCON utility to set up the analog input configuration of the module

in hex format.

LinPAC Standard API Manual version 1.3.1 Page: 178

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=30; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7012;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;

wBuf[6]=1;

AnaloglInFsr(wBuf, fBuf, szSend, szReceive);
Al=wBuf[7];

Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 179

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloglinAll

Description:

This function is used to obtain the analog input value of all channels form 1-7000 series modules.

Syntax:
[C]
WORD AnaloglInAll (WORD wBuf{], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%2x]
[Input] COM port number, from 1 to 255
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7005/15/16/17/18/19/33
wBUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Float Input/Output argument table
fBuf[0]: [Output] Analog input value return of channel _0
fBuf[1]: [Output] Analog input value return of channel_1
fBuf[2]: [Output] Analog input value return of channel_2
fBuf[3]: [Output] Analog input value return of channel_3
fBuf[4]: [Output] Analog input value return of channel_4
fBuf[5]: [Output] Analog input value return of channel_5
fBuf[6]: [Output] Analog input value return of channel_6
fBuf[7]: [Output] Analog input value return of channel_7
szSend: [Input] Command string to be sent to 1-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 180

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



szReceive: [Output] Result string receiving from 1-7000 series modules

Note: Users have to use DCON utility to set up the analog input configuration of the module

in hex format.

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al[12], fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12], m_port=3 ,m_address=1;
WORD m_timeout=10, m_checksum=0; // the unitis 0.1 s for m_timeout
Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7017;

wBuf[3]=m_checksum;
wBuf[4]=m_timeout;

wBuf[6]=1;

AnaloglInAll(wBuf, fBuf, szSend, szReceive);
Al[0]=fBuf[0];

AlI[0]=fBuf[1];

Al[0]=fBuf[2];

Al[0]=fBuf[3];

Al[0]=fBuf[4];

AI[0]=fBuf[5];

Al[0]=fBuf[6];

AI[0]=fBuf[7];

Close_Com(COMB3);

LinPAC Standard API Manual version 1.3.1 Page: 181

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ThermocoupleOpen_7011

Description:

This function is used to detect the thermocouple state of 1-7011 modules for the supporting type
‘J,K, T,E, R, S, B, N, C"is open or close. If the response value is ‘0’, thermocouple I-7011 is working
in close state. If the response value is ‘1’, thermocouple 1-7011 is working in open state. For more

information please refer to user manual.

Syntax:

[C]
WORD ThermocoupleOpen_7011(WORD wBuf[],float fBuf[],char szSend[],
char szReceive[])

Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7011
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Output] Response value 0 = the thermocouple is close
Response value 1 = the thermocouple is open
wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to 1-7000 series modules
szReceive: [Output] Result string receiving from 1-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 182

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

WORD state;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unitis 0.1s

WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7011;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;

wBuf[6]=1;

ThermocoupleOpen_7011(wBuf, fBuf, szSend, szReceive);
state=wBuf[5];

Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 183

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B SetlLedDisplay

Description:

This function is used to configure LED display for specified channel of I-7000 analog input serial

modules.

Syntax:

WORD SetLedDisplay (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

wBuf:

wBuUf[0]:

wBuUf[1]:
wBuf[2]:
wBuUf[3]:
wBuf[4]:
wBUf[5]:
wBuf[6]:

fBuf:
szSend:

szReceive:

Return Value:

WORD Input/Output argument table
[LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x7013/16/33
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Set display channel
[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
Not used
[Input] Command string to be sent to I-7000 series modules

[Output] Result string receiving from [-7000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 184

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7033;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=1; // Set channel 1 display.
wBuf[6]=1;

SetLedDisplay(wBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 185

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B GetlLedDisplay

Description:

This function is used to get the current setting of the specified channel for LED display channel for

specified channel of I-7000 analog input serial modules.

Syntax:
[C]
WORD GetLedDisplay (WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7013/16/33
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Output] Current channel for LED display
O=channel_0
1=channel_1
wBuUf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 186

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0 is for Success.

Not O is for Failure.

Examples:

WORD led;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7033;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[6]=1;

GetLedDisplay(wBuf, fBuf, szSend, szReceive);
Led=wBuf[5];

Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 187

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4.2. 1-8000 series modules

B Analogin_8K

Description:

This function is used to obtain input value form I-8000 analog input series modules.

Syntax:

[C]

WORD Analogin_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x8017
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Channel number of analog input module
[Input] 0 > No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float Input/Output argument table
[Output] Analog input value
[Input] Command string to be sent to 1-8000 series modules

[Output] Result string receiving from [-8000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 188

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8017;

dwBuf[3]=m_checksum;
dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

AnalogIn_8K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard APl Manual version 1.3.1 Page: 189

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginHex_8K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form [-8000 analog input series

modules.
Syntax:
[C]
WORD AnaloginHex_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, from 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x8017
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting , the unit=0.1s
dwBuUf[5]: [Input] Channel number of analog input module
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

dwBuUf[8]: [Output] The analog input value in Hex format

fBuf: Not used

szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from [-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 190

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

DWORD Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

AnaloglinHex_8K(dwBuf, fBuf, szSend, szReceive);
Al=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 191

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginFsr_8K

Description:

This function is used to obtain input value in ‘FSR’ form 1-8000 analog input series modules. The

‘FSR’ means ‘Percent’ format.

Syntax:
[C]
WORD AnaloglInFsr_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x8017
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBuUf[5]: [Input] Channel number of analog input module
dwBuf[6]: [Input] 0 —> No save to szSend &szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

fBuf: Float input/Output argument table

fBuf[O]: [Output] The analog input value

szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from [-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 192

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

AnalogInFsr_8K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 193

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginAll_8K

Description:

This function is used to obtain input value of all channels form 1-8000 analog input series modules.

Syntax:
[C]

WORD AnaloglInAll_8K(DWORD dwBuf],float fBuf[],char szSend[],char szReceive[])
Parameter:

dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255

dwBuf[1]: [Input] Module address, form 0x00 to Oxff

dwBuUf[2]: [Input] Module ID, 0x8017

dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

dwBuUf[4]: [Input] Timeout setting, the unit=0.1s

dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

fBuf: Float input/Output argument table

fBuf[O]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

szSend: [Input] Command string to be sent to 1-8000 series modules

szReceive: [Output] Result string receiving from [-8000 series modules
LinPAC Standard API Manual version 1.3.1

Page: 194

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al[12], fBuf[12];

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;
DWORD,m_timeout=50, m_checksum=0; // the unitis 0.1 s for m_timeout
Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=1;

dwBuf[7]=1;

AnalogInAll_8K(dwBuf, fBuf, szSend, szReceive);
Al[0]=fBuf[0];

Al[1]=fBuf[1];

Al[2]=fBuf[2];

Al[3]=fBuf[3];

Al[4]=fBuf[4];

AI[5]=fBuf[5];

Al[6]=fBuf[6];

Al[7]=fBuf[7];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 195

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4.3. 1-9000 series modules

B Analogin_9K

Description:

This function is used to obtain input value form [-9000 analog input series modules.

Syntax:

[C]

WORD Analogin_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x9017
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Channel number of analog input module
[Input] 0 > No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float Input/Output argument table
[Output] Analog input value
[Input] Command string to be sent to 1-9000 series modules

[Output] Result string receiving from 1-9000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 196

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9017;

dwBuf[3]=m_checksum;
dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

Analogln_9K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard APl Manual version 1.3.1 Page: 197

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginHex_9K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form [-9000 analog input series

modules.
Syntax:
[C]
WORD AnaloginHex_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, from 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x9017
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting , the unit=0.1s
dwBuUf[5]: [Input] Channel number of analog input module
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

dwBuUf[8]: [Output] The analog input value in Hex format

fBuf: Not used

szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from [-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 198

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

DWORD Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

AnaloglnHex_9K(dwBuf, fBuf, szSend, szReceive);
Al=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 199

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginFsr_9K

Description:

This function is used to obtain input value in ‘FSR’ form 1-9000 analog input series modules. The

‘FSR’ means ‘Percent’ format.

Syntax:
[C]
WORD AnaloglInFsr_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x9017
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBuUf[5]: [Input] Channel number of analog input module
dwBuf[6]: [Input] 0 —> No save to szSend &szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

fBuf: Float input/Output argument table

fBuf[O]: [Output] The analog input value

szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from [-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 200

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

AnalogInFsr_9K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 201

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginAll_9K

Description:

This function is used to obtain input value of all channels form 1-9000 analog input series modules.

Syntax:
[C]
WORD AnaloglInAll_9K(DWORD dwBuf(],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x9017
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

fBuf: Float input/Output argument table

fBuf[O]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from [-9000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 202

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al[12], fBuf[12];

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;
DWORD m_timeout=20, m_checksum=0; // the unitis 0.1 s for m_timeout
Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=1;

dwBuf[7]=1;

AnalogInAll_9K(dwBuf, fBuf, szSend, szReceive);
Al[0]=fBuf[0];

Al[1]=fBuf[1];

Al[2]=fBuf[2];

Al[3]=fBuf[3];

Al[4]=fBuf[4];

AI[5]=fBuf[5];

Al[6]=fBuf[6];

Al[7]=fBuf[7];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 203

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4.4. 1-87000 series modules

B Analogin_87K

Description:

This function is used to obtain input value form I-87000 series analog input modules.

Syntax:

[C]

WORD Analogin_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

fBuf:
fBuf[O]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87013/15/16/17/18/19
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Channel number for multi-channel
[Input] 0 > No save to szSend & szReceive

1 - Save to szSend & szReceive
Float Input/Output argument table
[Output] The analog input value return
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 204

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=20; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuUf[2]=0x87017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnalogIn_87K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-Series.

LinPAC Standard APl Manual version 1.3.1 Page: 205

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginHex_87K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form 1-87000 series analog input

modules.
Syntax:
[C]
WORD AnaloginHex_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x87013/15/16/17/18/19
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBuUf[5]: [Input] Channel number for multi-channel
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
dwBuUf[7]: [Output] The analog input value in ‘Hex’ format
fBuf: Not used
szSend: [Input] Command string to be sent to I1-87000 series modules

szReceive: [Output] Result string receiving from [-87000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 206

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

DWORD Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuUf[2]=0x87017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnaloglnHex_87K(dwBuf, fBuf, szSend, szReceive);
Al=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 207

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginFsr_87K

Description:

This function is used to obtain input value in ‘FSR’ form |-87000 series analog input modules.

Syntax:

WORD AnaloglInFsr_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87013/15/16/17/18/19
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Channel number for multi-channel
[Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
Float Input/Output argument table
[Output] The analog input value
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 208

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

DWORD Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuUf[2]=0x87017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnaloglnHex_87K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 209

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloglnAll_87K

Description:

This function is used to obtain input value of all channels form 1-87000 series analog input

modules.
Syntax:
[C]
WORD AnaloglInAll_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x87013/15/16/17/18/19
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s

dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table.

fBuf[O]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

szSend: [Input] Command string to be sent to I1-87000 series modules
szReceive: [Output] Result string receiving from [-87000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 210

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al[12], fBuf[12];

DWORD Al;

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;
DWORD m_timeout=50, m_checksum=0; // the unitis 0.1 s for m_timeout
Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuUf[2]=0x87017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=1;

AnalogInAll_87K(dwBuf, fBuf, szSend, szReceive);
Al[0]=fBuf[0];

Al[1]=fBuf[1];

Al[2]=fBuf[2];

Al[3]=fBuf[3];

Al[4]=fBuf[4];

AI[5]=fBuf[5];

Al[6]=fBuf[6];

Al[7]=fBuf[7];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 211

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



4.5. 1-97000 series modules

B Analogin_97K

Description:

This function is used to obtain input value form 1-97000 series analog input modules.

Syntax:

[C]

WORD Analogin_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBUf[5]:
dwBuf[6]:

fBuf:
fBuf[O]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x97015/17/18/19
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Channel number for multi-channel
[Input] 0 > No save to szSend & szReceive
1 - Save to szSend & szReceive
Float Input/Output argument table
[Output] The analog input value return
[Input] Command string to be sent to 1-97000 series modules

[Output] Result string receiving from [-97000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 212

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

Analogln_97K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 213

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginHex_ 97K

Description:

This function is used to obtain input value in ‘Hexadecimal’ form 1-97000 series analog input

modules.
Syntax:
[C]
WORD AnaloginHex_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x97015/17/18/19

dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s

dwBuUf[5]: [Input] Channel number for multi-channel
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Output] The analog input value in '"Hex’ format

fBuf: Not used

szSend: [Input] Command string to be sent to 1-97000 series modules
szReceive: [Output] Result string receiving from 1-97000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 214

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

DWORD Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnaloglnHex_97K(dwBuf, fBuf, szSend, szReceive);
Al=dwBuf[8];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 215

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloginFsr_97K

Description:

This function is used to obtain input value in ‘FSR’ form 1-97000 series analog input modules.

Syntax:

WORD AnaloglInFsr_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x97015/17/18/19
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] Channel number for multi-channel
[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
Float Input/Output argument table
[Output] The analog input value
[Input] Command string to be sent to 1-97000 series modules

[Output] Result string receiving from [-97000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 216

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

DWORD Al;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unitis 0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnaloglnHex_97K(dwBuf, fBuf, szSend, szReceive);
Al=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 217

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnaloglnAll_97K

Description:

This function is used to obtain input value of all channels form 1-97000 series analog input

modules.
Syntax:
[C]
WORD AnaloglInAll_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x97015/17/18/19

dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s

dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[O]: [Output] Analog input value of channel 0

fBuf[1]: [Output] Analog input value of channel 1

fBuf[2]: [Output] Analog input value of channel 2

fBuf[3]: [Output] Analog input value of channel 3

fBuf[4]: [Output] Analog input value of channel 4

fBuf[5]: [Output] Analog input value of channel 5

fBuf[6]: [Output] Analog input value of channel 6

fBuf[7]: [Output] Analog input value of channel 7

szSend: [Input] Command string to be sent to 1-97000 series modules
szReceive: [Output] Result string receiving from [-97000 series modules

LinPAC Standard API Manual version 1.3.1 Page: 218

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Al[12], fBuf[12];

DWORD Al;

char szSend[80], szReceive[80];

DWORD dwBuf[12], m_port=3, m_address=1;
DWORD m_timeout=50, m_checksum=0; // the unitis 0.1 s for m_timeout
Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97017;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[6]=1;

AnalogInAll_97K(dwBuf, fBuf, szSend, szReceive);
Al[0]=fBuf[0];

Al[1]=fBuf[1];

Al[2]=fBuf[2];

Al[3]=fBuf[3];

Al[4]=fBuf[4];

AI[5]=fBuf[5];

Al[6]=fBuf[6];

Al[7]=fBuf[7];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 219

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



5. Analog Output Functions

Supported LinPACs

The table below lists the common functions of analog output modules that are supported by each

LinPAC. For more details, please refer to the corresponding chapters.

(3 1-8000/9000 modules via parallel port
About special applications of API function for 1-8000/9000 modules, please visit to

http://ftp.icpdas.com/pub/cd/linpac/napdos/lp-8x4x/user manual/

Note: For more details about old version 1-8024 API, please refer to Appendix C2.

3 1-7000 modules via serial port

Models LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-Series
Functions
AnalogOut 4 4 4 4 v v v
AnalogOutReadBack 4 4 v v v v
AnalogOutHex v v v v v v
AnalogOutFsr 4 4 4 4 v v
AnalogOutReadBackHex 4 4 v v v v
AnalogOutReadBackFsr 4 4 4 4 v v

Note: LX-Series includes LX-8000 and LX-9000 series.

3 1-8000 modules via serial port

Models

LP-2x4x LP-51xx LP-52xx LP-8x2x | LP-8x4x LP-9x2x LX-8000

Functions

AnalogOut_8K v v v
AnalogOutReadBack_8K 4 v
ReadConfigurationStatus_8K v v
SetStartUpValue_8K 4 v
ReadStartUpValue_8K v v

LinPAC Standard API Manual version 1.3.1 Page: 220

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


http://ftp.icpdas.com/pub/cd/linpac/napdos/lp-8x4x/user_manual/

O 1-9000 modules via serial port

Models

Functions

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

AnalogOut_9K

AnalogOutReadBack_9K

ReadConfigurationStatus_9K

SetStartUpValue_9K

ReadStartUpValue_9K

SIS NN

3 1-87000 modules via serial port

Models

Functions

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-8000

AnalogOut_87K

AnalogOutReadBack_87K

ReadConfigurationStatus_87K

SetStartUpValue_87K

ReadStartUpValue_87K

AN A NN WAN
AN A NN WAN

3 1-97000 modules via serial port

Models

Functions

LP-2x4x LP-51xx LP-52xx LP-8x2x LP-8x4x LP-9x2x LX-9000

AnalogOut_97K

AnalogOutReadBack_97K

ReadConfigurationStatus_97K

SetStartUpValue_97K

ReadStartUpValue_97K

RSN SN

LinPAC Standard APl Manual

version 1.3.1 Page: 221

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com




5.1. 1-7000 series modules

B AnalogOut

Description:

This function is used to obtain analog value from analog output module of I-7000 series modules.

Syntax:
[C]
WORD AnalogOut(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] COM port number, from 1 to 255
[LX-Series]
[Input] ttySO~ttyS34, ttySAO, ttySA1l
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7016/21/22/24
wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, n the unit=0.1s
wBuf[5]: [Input] The analog output channel number
wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Float Input/Output argument table.
fBuf[O]: [Input] Analog output value
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from I-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 222

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unitis0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7016;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

// wBuf[5]=0; // 1-7016 no used.
wBuf[6]=1;
fBuf[0]=3.5 // Excitation Voltage output +3.5V.

AnalogOut(wBuf, fBuf, szSend, szReceive);

Close_Com(COMB3);

Remark:

(1) The function can be applied for all LinPAC series.

LinPAC Standard API Manual version 1.3.1 Page: 223

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



m  AnalogOutReadBack

Description:

This function is used to obtain read back the analog value of analog output modules of 1-7000

series modules. There are two types of read back functions, as described in the following:

1. Last value is read back by SAA6 command.

2. Analog output of current path is read back by SAA8 command.

Syntax:
[C]
WORD AnalogOutReadBack(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7016/21/22/24
wBUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] 0 —> Command SAA6 read back
1 > Command $SAAS read back
Note: (1) When the module is I-7016: Don’t care

(2) When the module is I-7021/22, analog output of current path read back (SAA8)
(3) When the module is I-7024, the updating value in a specific Slew rate (SAA8)

(For more information, please refer to 1-7021/22/24 manual)

wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
LinPAC Standard API Manual version 1.3.1 Page: 224

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



wBuUf[7]:

fBuf:
fBuf[O]:
szSend:

szReceive:

Return Value:

[Input] The analog output channel No. (0 to 3) of module I-7024
No used for single analog output module

Float Input/Output argument table

[Output] Analog output read back value

[Input] Command string to be sent to I-7000 series modules

[Output] Result string receiving from 1-7000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Volt, fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12], m_port=3, m_address=1;

WORD m_timeout=50, m_checksum=0; // the unit=0.1s

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7021;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;
wBuf[6]=1;
wBuf[7]=1;

// SAA6 command.

AnalogOutReadBack(wBuf, fBuf, szSend, szReceive);

Volt=fBuf[0];

// Receive: ‘101+2.57" excitation voltage, Volt=2.57.

Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1

Page: 225

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



B AnalogOutHex

Description:

This function is used to obtain analog value of analog output modules through Hex format.

Syntax:
[C]
WORD AnalogOutHex(WORD wBuf(],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%2x]
[Input] COM port number, from 1 to 255
wBuf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7021/21P/22
wBUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] The analog output channel number
(No used for single analog output module)
wBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
wBuUf[7]: [Input] Analog output value in Hexadecimal data format
fBuf: Not used
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from [-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 226

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=30; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7022;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=1; // Channel 1.

wBuf[6]=1;

wBuf[7]=0x250;

AnalogOutHex(wBuf, fBuf, szSend, szReceive);

Close_Com(COMB3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 227

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnalogOutFsr

Description:

This function is used to obtain analog value of analog output modules through % of span data

format. This function only can be used after analog output modules is set as ‘FSR’ output mode.

Syntax:
[C]
WORD AnalogOutFsr(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7021/21P/22
wBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuUf[4]: [Input] Timeout setting, the unit=0.1s
wBUf[5]: [Input] The analog output channel number
(No used for single analog output module)
wBuUf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
fBuf: Float Input/Output argument table
fouf[O]: [Input] Analog output value in % of Span data format
szSend: [Input] Command string to be sent to I-7000 series modules
szReceive: [Output] Result string receiving from 1-7000 series modules
LinPAC Standard API Manual version 1.3.1 Page: 228

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s
WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7022;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=1; // Channel 1.

wBuf[6]=1;

fBuf[0]=50;

AnalogOutFsr(wBuf, fBuf, szSend, szReceive);

Close_Com(COMB3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard API Manual version 1.3.1 Page: 229

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnalogOutReadBackHex

Description:

This function is used to obtain read back the analog value of analog output modules in Hex format
for 1-7000 series modules. There are two types of read back functions, as described in the

following:
1. Last value is read back by SAA6 command.

2. Analog output of current path is read back by SAA8 command.

Syntax:
[C]
WORD AnalogOutReadBackHex(WORD wBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7021/21P/22
wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBuf[5]: [Input] 0 —> Command SAA6 read back
1 = Command SAAS read back
wBuUf[6]: [Input] 0 - No save to szSend & szReceive
1 - Save to szSend & szReceive
wBuUf[7]: [Input] The analog output channel No.
No used for single analog output module
wBuUf[9]: [Output] Analog output value in Hexadecimal data format
fBuf: Not used
LinPAC Standard API Manual version 1.3.1 Page: 230

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



szSend:

szReceive:

Return Value:

[Input] Command string to be sent to I-7000 series modules

[Output] Result string receiving from 1-7000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

WORD Volt;
float fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12], m_port=3, m_address=1;

WORD m_timeout=50, m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

wBuf[0]=m_port;

wBuf[1]=m_address;

wBuf[2]=0x7021;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;
wBuf[6]=1;
wBuf[7]=0;

// Command SAA6.

AnalogOutReadBackHex(wBuf, fBuf, szSend, szReceive);

Volt=wBuf[9];

Close_Com(COMB3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1

// the unit is 0.1 s for m_timeout

Page: 231

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



m  AnalogOutReadBackFsr

Description:

This function is used to obtain read back the analog value of analog output modules through % of
span data format for I-7000 series modules. There are two types of read back functions, as

described in the following:
1. Last value is read back by SAA6 command.

2. Analog output of current path is read back by $AA8 command.

Syntax:
[C]
WORD AnalogOutReadBackFsr(WORD wBuf{], float fBuf[], char szSend[], char szReceive[])
Parameter:
wBuf: WORD Input/Output argument table
wBuf[0]: [LP-2x4x/52xx]
[Input] COM1, COM2, COM4, COM5
(1=COM1, 2=COM2=/dev/tty02, 4=COM4=/dev/tty04, 5=COM5=/dev/tty05)
[LP-51xx/8x2x/8x4x/9%x2x]
[Input] COM port number, from 1 to 255
wBuUf[1]: [Input] Module address, form 0x00 to Oxff
wBuf[2]: [Input] Module ID, 0x7021/21P/22
wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
wBuf[4]: [Input] Timeout setting, the unit=0.1s
wBuf[5]: [Input] 0 —> Command SAA6 read back
1 = Command SAAS read back
wBuUf[6]: [Input] 0 - No save to szSend & szReceive
1 - Save to szSend & szReceive
wBuUf[7]: [Input] The analog output channel No.
No used for single analog output module
fBuf: Float input/output argument table
fBuf[0]: [Output] Analog output value in % Span data format
LinPAC Standard API Manual version 1.3.1 Page: 232

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com




szSend:

szReceive:

Return Value:

[Input] Command string to be sent to I-7000 series modules

[Output] Result string receiving from 1-7000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

Examples:

float Volt, fBuf[12];

char szSend[80], szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=50; // the unit=0.1s

WORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

wBuf[0]=m_port;

wBuf[1]=m_address;

wBuUf[2]=0x7021;

wBuf[3]=m_checksum;

wBuf[4]=m_timeout;

wBuf[5]=0;
wBuf[6]=1;
wBuf[7]=0;

// Command SAA6.

AnalogOutReadBackFsr(wBuf, fBuf, szSend, szReceive);

Volt=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can't be applied on PAC: LX-Series.

LinPAC Standard APl Manual version 1.3.1

Page: 233

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



5.2. 1-8000 series modules

B AnalogOut_8K

Description:

This function is used to obtain analog value of analog output module for I1-8000 series modules.

Syntax:

WORD AnalogOut_8K(DWORD dwBuf(], float fBuf[], char szSend[], char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x8024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float Input/Output argument table
[Input] Analog output value
[Input] Command string to be sent to 1-8000 series modules

[Output] Result string receiving from [-8000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 234

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

fBuf[0]=2.55;

AnalogOut_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard APl Manual version 1.3.1 Page: 235

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnalogOutReadBack_ 8K

Description:

This function is used to read back the analog value of analog output module for I-8000 series

modules.

Syntax:

[C]
WORD AnalogOutReadBack_8K(DWORD dwBuf[], float fBuf[], char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuf[0]: [Input] COM port number, from 1 to 255
dwBuUf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x8024
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuf[4]: [Input] Timeout setting, the unit=0.1s
dwBuUf[5]: [Input] The defined analog output channel No.
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

fBuf: Float Input/Output argument table

fBuf[O]: [Input] Analog output value

szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from 1-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 236

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float Valot;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuf[7]=1;

AnalogOutReadBack_8K(dwBuf, fBuf, szSend, szReceive);
Volt=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 237

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadConfigurationStatus_8K

Description:

This function is used to read configuration status of analog output module for 1-8000 series

modules.

Syntax:

[C]
WORD ReadConfigurationStatus_8K(DWORD dwBuf[],float fBuf[],char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuf[0]: [Input] COM port number, from 1 to 255
dwBuUf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x8024
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuf[4]: [Input] Timeout setting, the unit=0.1s
dwBuUf[5]: [Input] The defined analog output channel No.
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
dwBuUf[7]: [Input] Slot number
dwBuUf[8]: [Output] Output range: 0x30, 0x31,0x32
dwBuUf[9]: [Output] Slew rate

fBuf: Not used
szSend: [Input] Command string to be sent to 1-8000 series modules
szReceive: [Output] Result string receiving from 1-8000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 238

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

ReadConfigurationStatus_8K(dwBuf, fBuf, szSend, szReceive);
Status=dwBuf[8];

Rate=dwBuf[9];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 239

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B SetStartUpValue_8K

Description:

This function is used to setting start-up value of analog output module for I1-8000 series modules.

Syntax:

WORD SetStartUpValue_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x8024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Not used
[Input] Command string to be sent to 1-8000 series modules

[Output] Result string receiving from 1-8000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 240

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

SetStartUpValue_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 241

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadStartUpValue 8K

Description:

This function is used to read start-up value of analog output module for I1-8000 series modules.

Syntax:

WORD ReadStartUpValue_8K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
fBuf[O]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x8024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float input/output argument table
[Output] Start-Up value
[Input] Command string to be sent to 1-8000 series modules

[Output] Result string receiving from 1-8000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 242

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x8024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuf[7]=1;

ReadStartUpValue_8K(dwBuf, fBuf, szSend, szReceive);
StartUp=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 243

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



5.3. 1-9000 series modules

B AnalogOut_9K

Description:

This function is used to obtain analog value of analog output module for I-9000 series modules.

Syntax:

WORD AnalogOut_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x9024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float Input/Output argument table
[Input] Analog output value
[Input] Command string to be sent to 1-9000 series modules

[Output] Result string receiving from 1-9000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 244

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

fBuf[0]=2.55;

AnalogOut_9K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard APl Manual version 1.3.1 Page: 245

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnalogOutReadBack 9K

Description:

This function is used to read back the analog value of analog output module for 1-9000 series

modules.

Syntax:

[C]
WORD AnalogOutReadBack_9K(DWORD dwBuf[],float fBuf[],char szSend[],
char szReceive[]

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x9024
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] The defined analog output channel No.
dwBuf[6]: [Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive

dwBuUf[7]: [Input] Slot number

fBuf: Float Input/Output argument table

fBuf[O]: [Input] Analog output value

szSend: [Input] Command string to be sent to I1-9000 series modules
szReceive: [Output] Result string receiving from [-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 246

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float Valot;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuf[7]=1;

AnalogOutReadBack_9K(dwBuf, fBuf, szSend, szReceive);
Volt=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 247

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadConfigurationStatus_9K

Description:

This function is used to read configuration status of analog output module for 1-9000 series

modules.

Syntax:

[C]
WORD ReadConfigurationStatus_9K(DWORD dwBuf[],float fBuf[],char szSend[],
char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table
dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x9024
dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s
dwBUf[5]: [Input] The defined analog output channel No.
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive
dwBuUf[7]: [Input] Slot number
dwBuUf[8]: [Output] Output range: 0x30, 0x31,0x32
dwBuUf[9]: [Output] Slew rate

fBuf: Not used
szSend: [Input] Command string to be sent to 1-9000 series modules
szReceive: [Output] Result string receiving from 1-9000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 248

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

ReadConfigurationStatus_9K(dwBuf, fBuf, szSend, szReceive);
Status=dwBuf[8];

Rate=dwBuf[9];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 249

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B SetStartUpValue_9K

Description:

This function is used to setting start-up value of analog output module for 1-9000 series modules.

Syntax:

WORD SetStartUpValue_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x9024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Not used
[Input] Command string to be sent to 1-9000 series modules

[Output] Result string receiving from 1-9000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 250

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

SetStartUpValue_9K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 251

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadStartUpValue 9K

Description:

This function is used to read start-up value of analog output module for I-9000 series modules.

Syntax:

WORD ReadStartUpValue_9K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
fBuf[O]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x9024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float input/output argument table
[Output] Start-Up value
[Input] Command string to be sent to I1-9000 series modules

[Output] Result string receiving from [-9000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 252

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x9024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuf[7]=1;

ReadStartUpValue_9K(dwBuf, fBuf, szSend, szReceive);
StartUp=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 253

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



5.4. 1-87000 series modules

B AnalogOut_87K

Description:

This function is used to output input value form 1-87000 series analog input modules.

Syntax:
[C]
WORD AnalogOut_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255
dwBuUf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x87024

dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuf[4]: [Input] Timeout setting, the unit=0.1s

dwBuUf[5]: [Input] Channel number for multi-channel
dwBuUf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[O]: [Output] The analog output value

szSend: [Input] Command string to be sent to I1-87000 series modules
szReceive: [Output] Result string receiving from [-87000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 254

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=50; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

fBuf[0]=2.55; /] +2.55V.

AnalogOut_87K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied on PAC: LP-8x2x, LP-8x4x and LX-8000.

LinPAC Standard APl Manual version 1.3.1 Page: 255

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



m  AnalogOutReadBack_87K

Description:

This function is used to read back the analog value of analog output module for 1-87000 series

modules. There are two types of read back functions, as described in the following:
1. Last value is read back by SAA6 command.

2. Analog output of current path is read back by SAA8 command.

Syntax:

[C]
WORD AnalogOutReadBack_87K(DWORD dwBuf{],float fBuf[],char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x87024

dwBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s

dwBUf[5]: [Input] The defined analog output channel No.
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[O]: [Output] Analog output read back value

szSend: [Input] Command string to be sent to I1-87000 series modules
szReceive: [Output] Result string receiving from [-87000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 256

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnalogOutReadBack_87K(dwBuf, fBuf, szSend, szReceive);
Volt=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 257

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadConfigurationStatus_87K

Description:

This function is used to read configuration status of analog output module for I-87000 series

modules.

Syntax:

WORD ReadConfigurationStatus_87K(DWORD dwBuf{], float fBuf[], char szSend[],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

dwBuUf[7]:
dwBuUf[8]:
dwBuUf[9]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table

[Input] COM port number, from 1 to 255

[Input] Module address, form 0x00 to Oxff

[Input] Module ID, 0x87024

[Input] 0=Checksum disable; 1=Checksum enable

[Input] Timeout setting , the unit=0.1s

[Input] The defined analog output channel No.

[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive

[Input] Slot number

[Output] Output range: 0x30, 0x31,0x32

[Output] Slew rate

Not used

[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 258

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

ReadConfigurationStatus_87K(dwBuf, fBuf, szSend, szReceive);
Status=dwBuf[8];

Rate=dwBuf[9];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 259

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B SetStartUpValue_87K

Description:

This function is used to setting start-up value of analog output module for I-87000 series modules.

Syntax:

WORD SetStartUpValue_87K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 - No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Not used
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 260

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=10; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

SetStartUpValue_87K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard API Manual version 1.3.1 Page: 261

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadStartUpValue_ 87K

Description:

This function is used to setting start-up value of analog output module for I-87000 series modules.

Syntax:

WORD ReadStartUpValue_87K(DWORD dwBuf{], float fBuf[], char szSend(],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuf[6]:

dwBuUf[7]:
fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x87024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float input/output argument table
Start-Up value
[Input] Command string to be sent to I1-87000 series modules

[Output] Result string receiving from [-87000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 262

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

Float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x87024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=0;

dwBuf[6]=1;

dwBuUf[7]=1;

ReadStartUpValue_87K(dwBuf, fBuf, szSend, szReceive);
StartUp=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function can be applied on PAC: LP-8x2x and LP-8x4x.

LinPAC Standard APl Manual version 1.3.1 Page: 263

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



5.5. 1-97000 series modules

B AnalogOut_97K

Description:

This function is used to output input value form 1-97000 series analog input modules.

Syntax:
[C]
WORD AnalogOut_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])
Parameter:
dwBuf: DWORD Input/Output argument table

dwBuf[0]: [Input] COM port number, from 1 to 255
dwBuUf[1]: [Input] Module address, form 0x00 to Oxff
dwBuf[2]: [Input] Module ID, 0x97024

dwBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuf[4]: [Input] Timeout setting, the unit=0.1s

dwBuUf[5]: [Input] Channel number for multi-channel
dwBuUf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[O]: [Output] The analog output value

szSend: [Input] Command string to be sent to 1-97000 series modules
szReceive: [Output] Result string receiving from [-97000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 264

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

fBuf[0]=2.55; /] +2.55V.
AnalogOut_97K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function can be applied on PAC: LP-9x2x and LX-9000.

LinPAC Standard APl Manual version 1.3.1 Page: 265

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B AnalogOutReadBack 97K

Description:

This function is used to read back the analog value of analog output module for 1-97000 series

modules. There are two types of read back functions, as described in the following:
1. Last value is read back by SAA6 command.

2. Analog output of current path is read back by SAA8 command.

Syntax:

[C]
WORD AnalogOutReadBack_97K(DWORD dwBuf{], float fBuf[], char szSend[],

char szReceive[])

Parameter:

dwBuf: DWORD Input/Output argument table

dwBuUf[0]: [Input] COM port number, from 1 to 255
dwBuf[1]: [Input] Module address, form 0x00 to Oxff
dwBuUf[2]: [Input] Module ID, 0x97024

dwBuUf[3]: [Input] 0=Checksum disable; 1=Checksum enable
dwBuUf[4]: [Input] Timeout setting, the unit=0.1s

dwBUf[5]: [Input] The defined analog output channel No.
dwBuf[6]: [Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive

fBuf: Float Input/Output argument table

fBuf[O]: [Output] Analog output read back value

szSend: [Input] Command string to be sent to 1-97000 series modules
szReceive: [Output] Result string receiving from [-97000 series modules

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 266

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

AnalogOutReadBack_97K(dwBuf, fBuf, szSend, szReceive);
Volt=fBuf[0];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 267

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadConfigurationStatus_97K

Description:

This function is used to read configuration status of analog output module for 1-97000 series

modules.

Syntax:

WORD ReadConfigurationStatus_97K(DWORD dwBuf{],float fBuf[],char szSend[],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuUf[6]:

dwBuUf[7]:
dwBuUf[8]:
dwBuUf[9]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table

[Input] COM port number, from 1 to 255

[Input] Module address, form 0x00 to Oxff

[Input] Module ID, 0x97024

[Input] 0=Checksum disable; 1=Checksum enable

[Input] Timeout setting, the unit=0.1s

[Input] The defined analog output channel No.

[Input] 0 —> No save to szSend & szReceive
1 - Save to szSend & szReceive

[Input] Slot number

[Output] Output range: 0x30, 0x31,0x32

[Output] Slew rate

Not used

[Input] Command string to be sent to 1-97000 series modules

[Output] Result string receiving from [-97000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1

Page: 268

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD Status;

DWORD Rate;

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

ReadConfigurationStatus_97K(dwBuf, fBuf, szSend, szReceive);
Status=dwBuf[8];

Rate=dwBuf[9];

Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1 Page: 269

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B SetStartUpValue_ 97K

Description:

This function is used to setting start-up value of analog output module for I1-97000 series modules.

Syntax:

WORD SetStartUpValue_97K(DWORD dwBuf[],float fBuf[],char szSend[],char szReceive[])

[C]

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuf[5]:
dwBuUf[6]:

dwBuUf[7]:
fBuf:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x97024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Not used
[Input] Command string to be sent to 1-97000 series modules

[Output] Result string receiving from [-97000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 270

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
dwBuf[0]=m_port;

dwBuf[1]=m_address;

dwBuf[2]=0x97024;

dwBuf[3]=m_checksum;

dwBuf[4]=m_timeout;

dwBuf[5]=1;

dwBuf[6]=1;

dwBuUf[7]=1;

SetStartUpValue_97K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COMB3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard API Manual version 1.3.1 Page: 271

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ReadStartUpValue 97K

Description:

This function is used to setting start-up value of analog output module for I1-97000 series modules.

Syntax:

WORD ReadStartUpValue_97K(DWORD dwBuf({], float fBuf[], char szSend(],

[C]

char szReceive[])

Parameter:

dwBuf:

dwBuf[0]:
dwBuf[1]:
dwBuf[2]:
dwBuf[3]:
dwBuf[4]:
dwBuUf[5]:
dwBuf[6]:

dwBuUf[7]:
fBuf:
fBuf[0]:
szSend:

szReceive:

Return Value:

DWORD Input/Output argument table
[Input] COM port number, from 1 to 255
[Input] Module address, form 0x00 to Oxff
[Input] Module ID, 0x97024
[Input] 0=Checksum disable; 1=Checksum enable
[Input] Timeout setting, the unit=0.1s
[Input] The defined analog output channel No.
[Input] 0 —> No save to szSend & szReceive

1 - Save to szSend & szReceive
[Input] Slot number
Float input/output argument table
Start-Up value
[Input] Command string to be sent to 1-97000 series modules

[Output] Result string receiving from [-97000 series modules

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard API Manual version 1.3.1 Page: 272

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

Float StartUp;

float fBuf[12];

char szSend[80];

char szReceive[80];

DWORD dwBuf[12];

DWORD m_port=3;

DWORD m_address=1;

DWORD m_timeout=30; // the unit=0.1s
DWORD m_checksum=0;

Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

dwBuf[0]=m_port;
dwBuf[1]=m_address;
dwBuf[2]=0x97024;
dwBuf[3]=m_checksum;
dwBuf[4]=m_timeout;
dwBuf[5]=0;
dwBuf[6]=1;
dwBuUf[7]=1;

ReadStartUpValue_97K(dwBuf, fBuf, szSend, szReceive);

StartUp=fBuf[0];
Close_Com(COM3);

Remark:

(1) The function only for applied on PAC: LP-9x2x.

LinPAC Standard APl Manual version 1.3.1

Page: 273

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



6. Error Code Explanation

Explanation Explanation

0 NoError ID_ERROR
1 FunctionError -2 SLOT_ERROR
2 PortError -3 CHANNEL_ERROR
3 BaudrateError -4 HARDWARE_LPF_ERROR
4 DataError -5 SOFTWARE_LPF_ERROR
5 StopError -6 NOT_SUPPORT_ERROR
6 ParityError
7 CheckSumError
8 ComPortNotOpen
9 SendThreadCreateError
10 SendCmdError
11 ReadComStatusError
12 StrCheck Error
13 CmdError
14 X
15 TimeOut
16 X
17 Moduleld Error
18 AdChannelError
19 UnderRang
20 ExceedRange
21 InvalidateCounterValue
22 InvalidateCounterValue
23 InvalidateGateMode
24 InvalidateChannelNo
25 ComPortinUse
LinPAC Standard APl Manual version 1.3.1 Page: 274

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



7. Demos for 1/O Modules using C Language

In this section, we will focus on examples for the description and application of the control
functions on the 1-7k/1-8k/1-9k/1-87k/1-97k series modules for use with the LinPAC. For Windows
platform of the PXA270 series, after installing the LinPAC SDK, the demo programs provided below
can be found in the ‘C:/cygwin/LinCon8k/examples’ folder in Windows PC.

LinPAC Standard API Manual version 1.3.1 Page: 275

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



7.1. DI/DO Control Demo

7.1.1. I-7K Modules

The i7kdio.c demo application illustrates how to control DI/DO function using an 1-7050 module (8

DO channels and 7 DI channels) connected to an RS-485 network. The address of the module is 02

and the Baud Rate is 9600 bps.

The result of executing this demo program is that DO channels 0 to 7 on the [-7050 module will be

set as the channels, and DI channel 2 on the I-7050 module will be set as the input channel. The

source code for the demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80], ans;
WORD wBuf[12];
float fBuf[12];

/*
int main()

{
int  wRetVal;

// Check Open_Com3

wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

if (wRetVal > 0) {
printf(“open port failed!\n”);

return (-1);

}

/] *¥*¥*¥** 7050 DO && DI Parameter *******

wBuf[0] = 3; //COM Port.

wBuf[1] = 0x02; //Address.

wBuf[2] = 0x7050; //1D.

wBuf[3] =0; //CheckSum disabled.
LinPAC Standard APl Manual version 1.3.1

Page: 276

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



wBuf[4] = 100; //TimeOut , the unit=0.1s
wBuf[5] = 0xOf; //Set 8 DO Channels to ON.
wBuf[6] = 0; //Debug string.

// 7050 DO Output
wRetVal = DigitalOut(wBuf, fBuf, szSend, szReceive);
if (wRetVal)
printf(“DigitalOut_7050 Error !, Error Code=%d\n”, wRetVal);

printf(“The DO of 7050 : %u \n”, wBuf[5]);
// 7050 DI Input
Digitalin(wBuf, fBuf, szSend, szReceive);

printf(“The DI of 7050 : %u \n”, wBuf[5]);

Close_Com(COM3);
return O;

Follow the procedure below to achieve the desired results:

STEP 1: Write i7kdio.c

Copy the above source code above to a blank text file and save it using the name - i7kdio.c or

open the file from the C:\cygwin\LinCon8k\examples\i7k folder.

STEP 2: Compile i7kdio.c to an executable file - i7kdio.exe

Two methods can be used to compile the program, each of which is introduced here:

Method One - Using a Batch File (Icc.bat)

Open the LinPAC Build Environment by clicking the Start > Programs > ICPDAS > LinPAC SDK >

LinPAC Build Environment to open LinPAC SDK window, and change the path to

C:\cygwin\LinCon8k\examples\iZk. To compile the i7kdio.c file to an executable file, type lcc
iZkdio (refer to Figure 7.1.1-1).

LinPAC Standard API Manual version 1.3.1 Page: 277

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



« LinPAC-8x4xBuild Environment

:“ocumentsz and SettingssEdwardsDezktop>CHD.EXE -k c:“cygwin“lincon8k>setenvu.ba

LinPAC-BBBB SDK Environment Configure ————————
Target :ICPDAS LinPAC-8888 <(Arm based>

Work Divectory :C:sCygwin™LinCon8k

tweyguinsLinConBkred examplessi17k

rseygwinsLinCon8krexamples~i?k: lec iYhdio
wpile ok?
weyguinsLinConBk~examples ~i7k»div v
Uolume inm drive G has no 1 1.
Volume Serial Mumber iz 6CF3-2221
Divectory of C:scyguwinsLinCon8k“examplessi7k
-] E==1 i7kaio.c i7kaio.e i7kdio.c i7kdio.exe
4 File<s> 549 .849 hytes
2 Divd<s> 13.788.982.912 hytes
IC: e yguwinsLinCon8k examples ~\iVk>

Figure 7.1.1-1. Using a Batch File to compile i7kdio.c to an executable file

Method Two — Using Compile Instructions

When using this method, type cd C:\cygwin\LinCon8k\examples\i7k command prompt to change

the path. To compile i7kdio.c to an executable file, type arm-linux-gcc —I../../include —Im —o

i7kdio.exe i7kdio.c ../../lib/libi8k.a (refer to Figure 7.1.1-2).

LinPAC-8x4xBuild Environment BEER

C:~Documents and SettingssCindy“Desktop>CHMD_ERE -k c:scugwinsLinConB8kssetenv_bat
LinPAC—8x4x SDK Environment Configure
:ICPDAS LinPAC—8x4x <Arm based)
ork Directory :C:sCyguwinsLinConBk

IC:scpguin®LinConBklicd examplessi?k

C:weypguintLinConBksexanplessi?klarm—linux—gce —I..-/. . include —Im —o i7kdio.exe
[i?kdio.c ..~..-/1libs1ibiBk.a

ssoyguinsLinCon8ksexamples ~iPkidivr-u

Uolume in drive C has no label.

Uolume Serdial Mumber iz 6CF3-2221

Directory of CiscyguwinsLinConBkexamples»ivk

[.] | PR | i7kaio.c i?kaio.exe i?kdio.c i?kdio.exe
4 File<{s> 549,847 bytes
2 Divds)>» 13.7890.501.5084 hutes free

Gt scyguinsLinConB8kexamples ~ivks

Figure 7.1.1-2. Using Compile Instructions to compile i7kdio.c to an executable file

STEP 3: Transfer i7Zkdio.exe to the LinPAC

Two methods can be used to transfer the executable file to the LinPAC, each of which is

introduced here.

LinPAC Standard API Manual version 1.3.1 Page: 278

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Method One - Using an FTP application

(1) Open a FTP application and create a new FTP connection. Enter the login details for the
LinPAC, including the Host name (or IP address), Username and Password. The default value
for both the User_Name and the Password is ‘root’. Click the ‘Quickconnect’ button to

connect to the ftp server on the LinPAC. Refer to Figure 7.1.1-3 below for more details.

& root@192.168.0_200- FileZilla
File Edit View Transfer Server Bookmarks Help

Host: |192.1EB.D.2EIEI ‘ Lsername: Password: |**** ‘ Part: |21 | [ Cickcannect II

Response: 226 Directory send OF,

Status: Calculating timezone offset of server.,,

Cornrnand: DT S0170EMO.C

Response: 213 20170a0207 1439

Status: Tirnezone offsets: Server: 0 seconds. Local: 28800 seconds. Difference; 28800 seconds.
Status: Directory listing successful

Figure 7.1.1-3. Using an FTP application

(2) Upload the file i7kdio.exe file to the LinPAC (refer to Figure 7.1.1-4).

£ root@192. 168.0.200- FileZilla =13

File Edit ¥iew Transfer Server PBookmarks Help
Host: |192.1EB.EI.2EIEI | Lisername: Password: |**** | Port: |21 | ’ Qickconnect ]I
Local site |:RcvgwinHLinCnanIexampleskcummum » | Remote site|fr|:u:|t w
3 common Allad/ .
On PC o7k = | =& oot On LinPAC
=187k v
< -
€ i7kdio.c .. =
TliTkdio.exe 4 Unload =) Desktop
led e 3 Documents
€lede P 544 files to queue 2 Downloads v
< < >
Selected | file, Tomlgize: 5 —PCD Selected 1 directory.
Edit
Create directory
Eefresh
Delete
Eename
Figure 7.1.1-4. Upload the i7kdio.exe file
LinPAC Standard APl Manual version 1.3.1 Page: 279

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



(3)

Choose i7kdio.exe in the LinPAC and Click the right mouse button to select the ‘Permissions’
option for the menu. Enter ‘777’ in the Numeric textbox to set the file permissions to
readable, writeable, and executable. Refer to Figures 7.1.1-5 and 7.1.1-6 below for more

details.

Z root@192.168.0.200- FileZilla

File Edit View Transfer Server PBookmarks Help
Huost: Lisername: Password: |**** | Port: |21 | [ Quickconnect ]I
Local site |:RcygwinkLinCnankexampleskcummnni v | Remote site|erDt w
O common Alle/ .
On PC =17k — 5 root On LinPAC
=187k v
5 £
€ i7kdio.c | ClEEE— 1
=i Tkdio.exe 5. | Ei9017Readal | ¥ Download
[ led 6 = i97kaio 4 add files to quene 1
€ledc 1 v || Elinstalllog Wiew/Edit M
< [ > < |
Selected 1 file. Totel size: 5,608 bytes Selected 1 file Totalsize: | Create directory
Create new file i
L root@10.1.0.37 Refresh
[ | Cieyewin\LPSx2% ... —xn froot!iThdic.exe A
Delete
Eename
Copy URL(E) to clipboard
File permissions...
Figure 7.1.1-5. Set the file permissions
Remote site|frDDt w
=

= oot On LinPAC

X

Please select the new attributes for the file
“heloword. exe”.

Change file attributes

_ ChynEr permissions
1901 7Read Al ¥ Download Read itite Execute
=) i97kaio 4 Add files to quene
£ install loz . . w Group permmissions
a View/Edit B [#]Read nitite: ExecLte
Selected 1 file. Totalsize: ©  Create directf:JIY N Public permissions
Create new file —‘ Read Write Execute
Refresh [
Delete Murneric value:
E You can Lse an x at any position to keep the
CenamL?RL( ) to clipboard permission the ariginal files have.
opy 2] to clipboar

File pern . [ (04 H Cancel ]

Figure 7.1.1-6. Enter ‘777’ in the Numeric textbox

LinPAC Standard APl Manual version 1.3.1 Page: 280

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Method Two — Using a DOS Command Prompt

(1) Open DOS Command Prompt and enter the IP_Address of the server on the LinPAC in order to

connect to the ftp server of the LinPAC. Enter the User Name and Password (the default

value is root) to login to the LinPAC ftp server.
(2) Files must be transferred in binary mode, so type ‘bin’ to set the mode.

At Command Prompt, type put c:/cygwin/lincon8k/examples/i7k/i7kdio.exe i7kdio.exe to

transfer the i7kdio.exe file to the LinPAC. Once the file has been transferred, the ‘Transfer

complete’ message will be displayed. Refer to Figure 7.1.1-7 below for more details.

¢\ DAWINDOWS\System32\cmd exe - ftp 192.168.0.200

D:\Docunents and Settings\RichardFang ftp 192.168.06.2068
onnected to 192.168.08.268.

228 localhost FIP server (GNU inetutils 1.4.2) ready.

User (192.168.08.2068:C(none?): root

331 Password reguired for root.

'Pdssuordl
38— MOKI B6.68

238 User root logged in.

» set to I.
tp) put c:/cyguin/lincon8k/examples/i7k/17kdio.exe 17kdio.exe

2608 PORI command sucessful.

58 Opening BINARY mode data connection for 'i7kdioc.exe’.
226 Transfer complete.

ftp: 272898 bhytes sent in 2.778econds 98.66Kbytes/sec.
ftp>

Figure 7.1.1-7. Using a DOS Command to transferred file

STEP 4: Use Telnet to the LinPAC to execute i7kdio.exe

At the Command Prompt, type telnet IP Address of the LinPAC to establish a connection to the

LinPAC. Enter User Name and Password (the default value is root) to login to the LinPAC.

At Command Prompt, type chmod 777 i7kdio.exe to set the i7kdio.exe file to executable, and then

type_i7kdio.exe to execute the i7kdio.exe file. Refer to Figures 7.1.1-8 and 7.1.1-9 below for more

details.

¢t | DAWINDOWS\System32icmd exe

D:\Documents and Settings\RichardFang)telnet 1%2.168.0.260_

Figure 7.1.1-8. Type telnet IP Address and to establish a connection with the LinPAC

LinPAC Standard API Manual version 1.3.1 Page: 281

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



= Telnet 192.168.0.200

LinPAC-8BBA series
Linux embedded controller
linpac—8808@ login: root
Pazzsword:
Distributor ID: ICP DAS
Description: LinPAGC—8xdx
Releaze 05: 1.8
Codename : PACLNE B.70
installed modules list

1 not installed

2 not installed

3 not installed

4 not installed

B chmod 777 iYkdio.exe
H iYkdio.exe

he DO of 78589

he DI of 7858

Figure 7.1.1-9. Execute the i7kdio.exe file

The message ‘The DO of 1-7050 : 255 (=2 ~ 8 -1 )’ indicates that DO channels 0 to 7 will be used to
output data, and the message ‘The DI of I-7050 : 123 (=127-2 * 2 )’ indicates that DI channel 2 will

be used as the input channel.

LinPAC Standard API Manual version 1.3.1 Page: 282

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



7.1.2. 1-87K Modules

If there are 1-87KW DIO modules inserted in the slots on the LP-8000, the ‘Open_Slot()’ and
‘ChangeToSlot()’ functions, must be called before other functions for the I-87KW modules and
used, and the ‘Close_Slot()’ function also needs to be called at the end of the program.

The i87kdio.c demo program will illustrate how to control the DI/DO function using an 1-87054W
module (8 DO channels and 8 DI channels). The module is in slot 3 on the LP-8000. The address
and baudrate in the LP-8000 are 00 and 115200 respectively, they were fixed by the library. The
result of this demo program is that DO channels 0 to 7 on the 1-87054W module will be set as the
output channels, and DI channel 1 on the 1-87054W module will be set as the input channel. The

source code for this demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80];
DWORD dwBuf[12];
float fBuf[12];
int main()
{
int i, wRetVal;
DWORD temp;
//Check Open_Slot
wRetVal = Open_Slot(0);
if (wRetVal > 0) {
printf(“open Slot failed. \n”);
return (-1);
}
//Check Open_Com1
wRetVal = Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
if (wRetVal > 0) {
printf(“open port failed. \n”);
return (-1);

//Choose Slot3
ChangeToSlot(3);

LinPAC Standard API Manual version 1.3.1 Page: 283

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



//--- Digital Output ---- **(DigitalOut_87k()**)

dwBuf[0] = 1; //COM Port.

dwBuf[1] = 00; //Address.

dwBuf[2] = 0x87054 //ID.

dwBuf[3] = 0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut, the unit=0.1s
dwBuUf[5] = Oxff; //Set digital output.
dwBuf[6] = 0; //Debug string.

wRetVal = DigitalOut_87k(dwBuf, fBuf, szSend, szReceive); //DO Output.
printf(“DO Value= %u”, dwBuf[5]);

//--- digital Input ----  **(Digitalln_87k()**)
dwBuUf[0] = 1; //COM Port.
dwBuf[1] = 00; //Address.
dwBuf[2] = 0x87054; //ID.
dwBuf[3] =0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut, the unit=0.1s
dwBuf[6] = 0; //Debug string.
getch();

Digitalln_87k(dwBuf, fBuf, szSend, szReceive); //DI Input.
printf(“Dl= %u”,dwBuf[5])

//--- digital output ----  ** Close DO **
dwBuf[0] = 1; //COM Port.
dwBuf[1] = 00; //Address.
dwBUf[2] = 0x87054; //ID.
dwBuf[3] =0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut, the unit=0.1s
dwBuf[5] = 0x00; //Digital output.
dwBuf[6] = 0; //Debug string .
getch(); //Press any key to continue.

wRetVal = DigitalOut_87k(dwBuf, fBuf, szSend, szReceive);
Close_Com(COML1);

Close_SlotAll();
return O,

LinPAC Standard APl Manual version 1.3.1 Page: 284

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



7.1.3. 1-8K Modules

The i8kdio.c demo program illustrates how to control the DI/DO functions using I-8055W modules
(8 DO channels and 8 DI channels) that are inserted into slot 3 on the LinPAC. The address and
baudrate for the LinPAC are 00 and 115200 bps separately, and they were fixed by library. The
result of executing this demo program is that DO channels 0 to 7 on the [-8055W module to will
be set as the output channels, and DI channel 0 on I-8055W module will be set as the input

channel. The source code for this demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”
char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* */

int main() —

{ Telnet 192.168.0.200

LinPAC-80HA series

intij, wRetVal; Linux embedded controller

WORD Doval,temp;

linpac—8888 login: root

wRetVal = Open_Slot(3); Password:

if (wRetVal > 0) { Diztributor ID: ICP DAS
printf(“open Slot failed. \n”); i‘lgPHG_sﬂx
return (-1); : PACLNX B.78

} installed modules list

//1-8055W_DO .. not installed

DO 8(3 255). .. not installed

. ,/ ’ oo ” ) .. not installed

printf(“DO of 1-8055 = 0x%x \n”, 255); ot installed

//1-8055W_DI T T

printf(“DI of 1-8055 = %x”,DI_8(3)); DO of 1-8855 = fF

Close_Slot(3); D1 of 1-8855 = fe

return O;

Figure 7.1.3-1. Execute the i8kdio.exe file

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 7.1.3-1 above illustrates the result of the execution.

LinPAC Standard API Manual version 1.3.1 Page: 285

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



7.2. Al/AO Control Demo

7.2.1. 1-7K Modules

The i7kaio.c demo application illustrates how to control the AI/AO functions using an 1-7017
module (8 Al channels) and an [-7021 modules (1 AO channel) connected to an RS-485 network.
The addresses for the I-7021 and I-7017 modules are 05 and 03, respectively, and the baudrate for
both modules is 9600 bps. The result of executing this demo program is that the AO channel on
the 1-7021 module will be set to output a voltage of 3.5V, and Al channel 2 on the I-7017 module

will be set as the input channel. The source code for this demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80];

WORD wBuf[12];

float fBuf[12];

/* */
int main()

{

inti, j, wRetVal;
DWORD temp;

wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
if (wRetVal > 0) {
printf(“open port failed!\n”);

return (-1);
}
//--- Analog output ----  *¥*** 7021 — AQ  **¥**
i=0;
wBUf[0] = 3; //COM Port.
wBuf[1] = 0x05; //Address.
wBuf[2] = 0x7021; //1D.
wBuf[3] = 0; //CheckSum disable.
wBuf[4] = 100; //TimeOut, the unit=0.1s
LinPAC Standard API Manual version 1.3.1 Page: 286

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



//wBuf[5] = i; //Not used if module ID is 7016/7021.
//Channel No. (0 to 1) if module ID is 7022.
//Channel No. (0 to 3) if module ID is 7024.

wBuf[6] = 0; //String debug.

fBuf[0] = 3.5; //Analog Value.

wRetVal = AnalogOut(wBuf, fBuf, szSend, szReceive);

if (wRetVal) //There was an error with the Analog Output on the |-7021.
printf(“AO of 7021 Error !, Error Code=%d\n"”, wRetVal);

else
printf(“AO of 7021 channel %d = %f \n”,i,fBuf[0]);

//--- Analog Input ----  *¥*** 7017 — A| *¥***

=1

wBuf[0] = 3; //COM Port.

wBuf[1] = 0x03; //Address.

wBuf[2] = 0x7017; //ID.

wBuf[3] = 0; //CheckSum disabled.
wBuf[4] = 100; //TimeOut, the unit=0.1s
wBuUf[5] = j; //Channel of Al.

wBuf[6] = 0; //Debug string.

wRetVal = AnalogIin(wBuf, fBuf, szSend, szReceive);

if (wRetVal) //There was an error with the Analog Input on the I-7017.
printf(“Al of 7017 Error !, Error Code=%d\n”, wRetVal);

else
printf(“Al of 7017 channel %d = %f \n”,j,fBuf[0]);

Close_Com(COM3);

return O;

LinPAC Standard API Manual version 1.3.1 Page: 287

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



For this example, the programming and execution procedures are the same as those described in

the section 7.1.1. Figure 7.2.1-1 below illustrates the result of execution.

Telnet 192.168.0.200

LinPAC-80HH series
Linux embedded controller
linpac—-8686BA login: root
Password:
Distributor ID: ICP DAS
Description: LinPAGC—8x4x
Release 05: 1.8
Codename = PACLNZ @.98
installed modules list

not installed

not installed

not installed

not installed

i i?kado.exe
¢ of P21 channel @ 3 .59EEE0
I of 78917 channel 1 3 .5896EEH

Figure 7.2.1-1. Execute the i7kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 288

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



7.2.2. 1-87K/97K Modules

If there are I-87KW/97K AIO modules inserted in the slots on the LinPAC, the ‘Open_Slot’ and
‘ChangeToSlot’ functions must be called before other functions for the I-87KW/97K modules are

used, and the ‘Close_Slot()’ function also needs to be called at the end of the program.

The i87kaio.c demo program illustrates how to control the Al/AO using an the 1-87022W module
(2 AO channels) and an 1-87017W module (8 Al channels). The 1-87022W and 1-87017W modules
are inserted into slots 2 and 3 of the LinPAC separately. The addresses and baudrate for both
modules in the LinPAC are 00 and 115200 bps separately, they were fixed by the library. The
result of executing this demo program is that AO channel 0 on the 1-87022W module will be set to
output a voltage of 2.5V, and Al channel 1 on the 1-87017W module will be set as the input

channel. The source code for this demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”
char szSend[80], szReceive[80];
DWORD wBuf[12];
DWORD wBuf7[12];
float fBuf[12];
int main()
{
inti,j, wRetVal;
DWORD temp;

//Check Open_Slot
wRetVal = Open_Slot(0);
if (wRetVal > 0) {

printf(“open Slot failed. \n”);
return (-1);

//Check Open_Com1
wRetVal = Open_Com(COM1, 115200, Data8Bit, NonParity, OneStopBit);
if (wRetVal > 0) {

printf(“open port failed. \n”);

return (-1);

LinPAC Standard API Manual version 1.3.1 Page: 289

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



ChangeToSlot(2);
//--- Analog output ----  ****
i=0;

wBuf[0] = 1;
wBuf[1] = 0x00;
wBuUf[2] = 0x87022;
wBuUf[3] =0;
wBuf[4] = 100;
wBUf[5] = i;
wBuf[6] = 0;
fBuf[0] = 2.5;

87022 — AQ  HFxx*

//COM Port.

//Address.

//\D.

//CheckSum disable.
//TimeOut , the unit=0.1s
//Channel Number of AO.
//String debug.

//AO Value.

wRetVal = AnalogOut_87k(wBuf, fBuf, szSend, szReceive);

if (wRetVal)

// There was an error with the Analog Output on the 1-87022W.

printf(“AO of 87022 Error, Error Code=%d\n”, wRetVal);

else

printf(“AO of 87022 channel %d = %f \n”,i,fBuf[0]);

ChangeToSlot(3);

//-- Analog Input ----  ****
=1

wBuf7[0] = 1;

wBUf7[1] = 0x00;

wBuf7[2] = 0x87017;
wBuf7[3] = 0;

wBuf7[4] = 100;

wBuf7([5] = j;

wBuf7[6] = 0;

87017 — Al Hx*x*

//COM Port

//Address

//\D.

//CheckSum disabled.
//TimeOut , the unit=0.1s
//Channel Number of Al.
//Debug string.

wRetVal = AnalogIn_87k(wBuf7, fBuf, szSend, szReceive);

if (wRetVal)

//There was an error with the Analog Output on the I1-87017W.
printf(“Al of 87017 Error, Error Code=%d\n”, wRetVal);

else

printf(“Al of 87017 channel %d = %f \n”,j,fBuf[0]);

Close_Com(COML1);
Close_SlotAll();
return O;

LinPAC Standard APl Manual

version 1.3.1

Page: 290

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



7.2.3. 1-8K/9K Modules

The i8kaio.c demo program illustrates how to control the AI/AO functions using the
1-8024W/9024 (4 AO channels) and 1-8017HW/9017 (8 Al channels) modules, which are inserted in
slot 1 and slot 2 on the LinPAC separately. The address and baudrate in the LinPAC are 00 and
115200 bps separately, and they were fixed by library. The result of executing this demo is that
AO voltage channel 0 on the 1-8024W/9024 module to will be set to output 5.5 V and Al channel 2
on the 1-8017HW/9017 module to will be set as the input channel. The source code for this demo

program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* */
int main()

{

int wRetVal;

short jumper;

int hAi, chAi, Arr_hAi[5];
float fVal, Arr_fAi[5];

//1-8024

wRetVal = Open_Slot(1);

if (wRetVal > 0) {
printf(“open Slot failed. \n”);
return (-1);

//18024 Initial
18024 _Initial(1);

//18024_AO Output
18024_VoltageOut(1,0,5.5);
printf("Slot1: 18024 Set CHO= %f\n",fVal);
Close_Slot(1);

LinPAC Standard API Manual version 1.3.1 Page: 291

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



//1-8017H

wRetVal = Open_Slot(2);

if (wRetVal > 0) {
printf(“open Slot failed. \n”);
return (-1);

//18017H Initial

18017_Init(2);

18017_GetSingleEndJumper(slot,&jumper); //Read Jumper status
//printf("Jumper mode: %d\n",jumper);

// First Method : Get Al Value: 18017_ReadAl

18017_ReadAl(2,2,1,&fVal); //18017_ReadAl(slot,channel,iGain,&fVal);
printf("Slot2: 18017_ReadAl CH2= %f\n",fVal);

Close_Slot(2);
return 0;

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 7.2.3-1 below illustrates the result of the execution.

[ ooi@icpdas
ogin as: root

root@10.1.0.222"'s password: *¥****

(Melcome to Ubuntu 12.04.4 LTS (GNU/Linux 3.2.14-rt24 armv?1)

| * Documentation: httpg://help.ubuntu.com/

{Lagt login: Tue Sep 5 03:04:31 2017 from 10.1.0.26

froot@icpdas :~#

Iroot@icpdas:~# chmod 777 i8kaio.exe

froot@icpdag :~# 18kaio.exe

[Slot]:18024 Set CHO= 5.500000

1S10t2:18017_ReadAl CHZ= 5.500305

root@icpdas :~4

Figure 7.2.3-1. Execute the i8kaio.exe file

LinPAC Standard APl Manual version 1.3.1 Page: 292

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Appendix

A. Demo for I/O Modules in slots on an I-87K 1/0
expansion unit

A1l. DIO Control Demo for I-87K Modules

If the I-87KW DIO modules are inserted in the slots on an I-87KW 1/O expansion unit, three parts

of the program illustrated in section 7.1.2 above will need to be modified as follows:

(1) The Open_Slot(), ChangeToSlot(), and Close_SlotAll() functions should be deleted.

(2) The address and baudrate of any I-87KW modules connected to the RS-485 network will need
to be configured wusing the DCON Utility, which can be downloaded from

http://www.icpdas.com/products/dcon/introduction.htm.

(3) The Open coml (i.e., the internal serial port on the LinPAC) will need to be changed to open

com3 (i.e., the RS-485 port on the LinPAC).

The 1-87054W is connected to an RS-485 network where the address is set to be 06 and the
baudrate is 9600 bps, which must be configured using the DCON Utility. The source code for the

i87kdio_87k.c demo program —is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80];

DWORD dwBuf[12];

float fBuf[12];

/* */
int main()

{

int i, wRetVal;

DWORD temp;

//Check Open_Com3

wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

LinPAC Standard API Manual version 1.3.1 Page: 293

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


http://www.icpdas.com/products/dcon/introduction.htm

if (wRetVal > 0) {
printf(“open port failed. \n”);

return (-1);
}
//--- digital output ----  **(DigitalOut_87k()**)
dwBuf[0] = 3; //COM Port.
dwBuf[1] = 06; //Address.
dwBuf[2] = 0x87054; //ID.
dwBuf[3] = 0; //CheckSum disable.
dwBuf[4] = 100; //TimeOut, the unit=0.1s
dwBuUf[5] = Oxff; //Digital output.
dwBuf[6] = 0; //String debug.

wRetVal = DigitalOut_87k (dwBuf, fBuf, szSend, szReceive);  //DO Output.

printf(“DO Value= %u”, dwBuf[5]);

//--- digital Input ----  **(Digitalln_87k()**)

dwBuf[0] = 3; //COM Port.

dwBuf[1] = 06; //Address.

dwBuf[2] = 0x87054; //ID.

dwBuf[3] =0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut, the unit=0.1s
dwBuf[6] = 0; //Debug string.

getch();

Digitalln_87k(dwBuf, fBuf, szSend, szReceive); //Dl Input.

printf(“Dl= %u”,dwBuf[5]);

//--- digital output ----  ** Close DO **

dwBuUf[0] = 3; //COM Port.

dwBuf[1] = 06; //Address.

dwBuf[2] = 0x87054; //ID.

dwBuf[3] =0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut, the unit=0.1s
dwBuf[5] = 0x00; //Digital output.

dwBuf[6] = 0; //Debug string.

getch(); //Press any key to continue.

wRetVal = DigitalOut_87k(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);
return O;

LinPAC Standard APl Manual version 1.3.1

Page: 294

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.1.1-1 below illustrates the result of the execution.

o+ Telnet 192.168.0.200

B i87kdio.exe
D0 Palue= 255
ni= 2

H

Figure 8.1.1-1. Execute the i87kdio.exe file

A2. AIO Control Demo for I-87K Modules

If the 1-87KW/97K modules are inserted in slots on an 1-87KW/97K 1/O expansion unit, the three

parts of the program illustrated in Section 7.2.2 above will need to be modified, as follows:

(1) The Open_Slot(), ChangeToSlot(), and Close_SlotAll() functions should be deleted.

(2) The address and baudrate of any I-87KW/97K modules connected to the RS-485 network will
need to be configured using the DCON Utility, which can be downloaded from

http://www.icpdas.com/products/dcon/introduction.htm.

(3) The Open comL1 (i.e,. the internal serial port on the LinPAC) will need to be changed to open

com3 (i.e., the RS-485 port on the LinPAC).

The 1-87022W/97022 and 1-87017W/97017 addresses are connected to the RS-485 network and
the addresses are set to 01 and 02 separately, with the baudrate for both modules set to 9600 bps,
which must be configured using the DCON Utility. The source code for the
i87kaio_87k.c/i97kaio_97k.c demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80];
DWORD wBuf[12];

LinPAC Standard API Manual version 1.3.1 Page: 295

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


http://www.icpdas.com/products/dcon/introduction.htm

DWORD wBuf7[12];
float fBuf[12];

/*

*/

int main()

{

inti,j, wRetVal;
DWORD temp;

//Check Open_Com3
wRetVal = Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);
if (wRetVal > 0) {

printf(“open port failed. \n”);

return (-1);
}
//--- Analog output ----  **** 87022 — AQ  F¥**
i=0;
wBuf[0] = 3; //COM Port.
wBuf[1] = 0x01; //Address.
wBUf[2] = 0x87022; //ID.
wBuf[3] = 0; //CheckSum disabled.
wBuf[4] = 100; //TimeOut, the unit=0.1s
wBuf[5] = i; //Channel Number of AO.
wBuf[6] = 0; //Debug string.
fBuf[0] = 2.5; //AO Value.

wRetVal = AnalogOut_87k(wBuf, fBuf, szSend, szReceive);
if (wRetVal)

printf(“AO of 87022 Error , Error Code=%d\n”, wRetVal);
else

printf(“AO of 87022 channel %d = %f \n”,i,fBuf[0]);

--- Analog Input ---- -
//-- Analog | kakk 87017 — Al Kxkx

=1
wBuf7[0] = 3; //COM Port.
wBuf7[1] = 0x02; //Address.
wBuf7[2] = 0x87017; //ID.
wBuf7[3] =0; //CheckSum disabled.
wBuf7[4] = 100; //TimeOut , the unit=0.1s
wBuf7[5] = j; //Channel Number of Al.
wBuf7[6] = 0; //Debug string.

LinPAC Standard API Manual version 1.3.1

Page: 296

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



wRetVal = AnalogIn_87k(wBuf7, fBuf, szSend, szReceive);
if (wRetVal)

printf(“Al of 87017 Error !, Error Code=%d\n”, wRetVal);
else

printf(“Al of 87017 channel %d = %f \n”,j,fBuf[0]);

Close_Com(COM3);

return O;

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.1.2-1 below illustrates the result of the execution.

Telnet 192.168.0.200

LinCon—8008 series
Linux embedded controller
lincon—8686868 login: root

assword:
MOKI B.78

H iR7kain.pxe

N of 87822 channel @ 2 556660
Al of 87817 channel 1 2.587868
i

Figure 8.1.2-1. Execute the i87kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 297

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B. Demo for I/O Modules in slots on an 1-8000 Controller

B1. DIO Control Demo for I-87K Modules

If the 1-87KW DIO modules are inserted the slots on an 1-8000 controller, the I-87KW modules will
be regarded as I-8KW modules. For more details, refer to the description of how to perform DI/DO

control on I-8KW modules provided in Appendix B3.

B2. AlO Control Demo for I-87K Modules

If the I-87KW AIO modules are inserted in slots on an [-8000 controller, the modules will be
regarded as I-8KW modules. For more details, refer to the description of how to perform Al/AO

control on I-8KW modules provided in Appendix B4.

B3. DIO Control Demo for I-8K Modules

The i8kdio_8k.c demo program illustrates how to control the DI/DO using the 1-8055W module (8
DO channels and 8 DI channels) on an 1-8000 controller. Configure the hardware by following the
procedure described below:

(1) Insert the I-8055W module into slot 0 on the 1-8000 controller.

(2) Connect the COM3 on the LinPAC to the COM1 on the I-8000 controller using an RS-232 cable.

The address of the 1-8000 controller is 01 and the baudrate is 115200 bps, which must be
configured using the DCON Utility. The result of executing this demo program is that DO channels
0 to 7 on the 1-8055W module to will be set to the output channel, and DI channel 0 on the

I-8055W module will be set as input channel. The source code for this demo program is as follows:

LinPAC Standard API Manual version 1.3.1 Page: 298

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80];
DWORD dwBuf[12];
float fBuf[12];

/*

*/

int main()

{

inti, wRetVal;
DWORD temp;

//Check Open_Com3
wRetVal = Open_Com(COM3, 115200, Data8Bit, NonParity, OneStopBit);
if (wRetVal > 0) {

printf(“open port failed. \n”);

return (-1);

}

//--- digital output ----  **(DigitalOut_8K()**)

dwBuf[0] = 3; //COM Port.

dwBuf[1] = 01; //Address.

dwBuf[2] = 0x8055; //ID.

dwBuf[3] =0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut, 1 the unit=0.1s
dwBuUf[5] = Oxff; //Digital output.

dwBuf[6] = 0; //Debug string.

dwBuf[7] = 1; //Slot number.

wRetVal = DigitalOut_8K(dwBuf, fBuf, szSend, szReceive);
if (wRetVal)

// There was an error with the Analog Output on the I-8055
printf(“DO of I-8055 Error, Error Code=%d\n”, wRetVal);

else
printf(“DO of 1-8055 = 0x%x"” ,dwBuf[5]);

//--- Digital Input ----  **(Digitalln_8K()**)

dwBuf[0] = 3; //COM Port.

dwBuf[1] = 01; //Address.

dwBuf[2] = 0x8055; //1D.

dwBuf[3] =0; //CheckSum

dwBuf[4] = 100; //TimeOut , the unit=0.1s
LinPAC Standard APl Manual version 1.3.1

Page: 299

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



dwBuf[6] = 0; //Debug string.
dwBuf[7] = 1; //Slot number.
getch();

Digitalln_8K(dwBuf, fBuf, szSend, szReceive);
printf(“DI = %u”,dwBuf[5]);

//--- Digital output ----  ** Close DO **

dwBuUf[0] = 3; //COM Port.

dwBuf[1] = 01; //Address.

dwBuf[2] = 0x8055; //ID.

dwBuf[3] =0; //CheckSum disabled.
dwBuf[4] = 100; //TimeOut , the unit=0.1s
dwBuf[5] = 0x00; //Digital output.

dwBuf[6] = 0; //Debug string.

dwBuf[7] = 1; //Slot number.

getch() //Push any key to continue.

wRetVal = DigitalOut_8K(dwBuf, fBuf, szSend, szReceive);
Close_Com(COM3);
return O;

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.2.3-1 below illustrates the result of the execution.

o, Telnet 192 1680200

LinCon—-8BBB series
Linux embedded controller

lincon—8866 login: root
Passuword:

i i8kdio Bk.exe
0 of BASS = Bxff
I=1

Figure 8.2.3-1. Execute the i8kdio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 300

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B4. AIO Control Demo for I-8K Modules

The i8kaio_8k.c demo program illustrates how to control the Al/AO functions using the 1-8024W

(4 AO channels) and I-8017HW (8 Al channels) modules, which are inserted into slot 0 and slot 1

on the 1-8000 controller. Configure the hardware by following the procedure described below:

(1) Insert the 1-8024W and 1-8017HW modules in slot 0 and slot 1 on the [-8000 controller

respectively.

(2) Install 8k232.exe or R232_300.exe to flash memory of 1-8000 controller as firmware.

(3) Connect COM3 on the LinPAC to COM1 on the I-8000 controller using an RS-232 cable.

The address of the [-8000 controller is 01 and baudrate is 115200 bps, which must be configured

using the DCON Utility. The result of executing this demo program is that AO voltage channel 0 on

the 1-8024W module to will be set to output 3.5 V, and Al channel 2 on the I1-8017HW module will

be set as the input channel. The source code for this demo program is as follows:

#include<stdio.h>
#include<stdlib.h>
#include “msw.h”

char szSend[80], szReceive[80];

DWORD wBuf[12];
float fBUf[12];

int main()

{

int i=0, j=2, wRetVal;

DWORD temp;

wRetVal = Open_Com(COM3, 115200, Data8Bit, NonParity, OneStopBit);

if (wRetVal > 0) {

printf(“open port failed. \n”);

return (-1);

}

//--- Analog output ----

wBuf[0] = 3;
wBuf[1] = 0x01;
wBuf[2] = 0x8024;

wBuf[3] = 0;
wBuf[4] = 100;
wBuUf[5] = i;

LinPAC Standard APl Manual

8024 —AQ ****

//COM Port.

//Address.

//\D.

//CheckSum disabled.
//TimeOut, the unit=0.1s
//Channel No. of AO.

version 1.3.1 Page: 301

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



wBuf[6] = 0; //Debug string.
wBuf[7] = 0; //Slot Number.
fBuf[0] = 3.5;
wRetVal = AnalogOut_8K(wBuf, fBuf, szSend, szReceive);
if (wRetVal)
printf(“AO of 8024 Error, Error Code=%d\n”, wRetVal);

else
printf(“AO of 8024 channel %d = %f \n”,i,fBuf[0]);
//--- Analog Input ----  *¥***  8017H — Al  *¥***
wBuf[0] = 3; //COM Port.
wBuf[1] = 0x01; //Address.
wBuf[2] = 0x8017; //ID.
wBuf[3] = 0; //CheckSum disabled.
wBuf[4] = 100; //TimeOut, the unit=0.1s
wBuUf[5] = j; //Channel of Al.
wBuf[6] = 0; //Debug string.
wBuf[7] = 1; //Slot Number.
wRetVal = Analogin_8K(wBuf, fBuf, szSend, szReceive);
if (wRetVal)
printf(“Al of 8017H Error, Error Code=%d\n"”, wRetVal);
else

printf(“Al of 8017H channel %d = %f \n”,j,fBuf[0]);

Close_Com(COM3);
return O;

For this example, the programming and execution procedures are the same as those described in

section 7.1.1. Figure 8.2.4-1 below illustrates the result of the execution.

cv | Telnet 192.168.0.200

LinCon—-8ABA series

dinux embedded controller

lincon—8888 login: root
word:
OKI B8.%8

i i8kaio_ 485.exe

A0 of 8824 channel B = 3.580080
Al of 88174 channel 2 31.58468068
d

Figure 8.2.4-1. Execute the i8kaio.exe file

LinPAC Standard API Manual version 1.3.1 Page: 302

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



C. The old version of the API function

The table below lists the old version of the API function for AIO modules via a parallel port that

are supported by each LinPAC. For more details, please refer to the corresponding chapters.

C1.1-8017 API Function
B 18017 _lInit

Description:

This function is used to initialize the I-8017HW modules (Analog input module) into the specified

slot. Users must execute this function before trying to use other functions within the 1-8017HW

modules.
Syntax:
[C]
int 18017 _lInit(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Modules LP-8x2x | LP-8x4x | LP-8x8x | LX-Series

Slot range 1~8 1~8 1~7 2~8

Return Value:

The version of library.

Examples:

int slot=1,ver;
ver=18017_Init(slot);

// The I-8017HW is inserted in slot 1 of LinPAC and initializes the module.

LinPAC Standard API Manual version 1.3.1 Page: 303

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B [8017_SetLed

Description:

Turns the 1-8017HW modules LED’s on/off. They can be used to act as an alarm.

Syntax:
[C]
void 18017_SetLed(int slot,unsigned int led)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted
led: [Input] Range from O to Oxffff

Modules LP-8x2x | LP-8x4x | LP-8x8x | LX-Series

Slot range 1~8 1~8 1~7 2~8

Return Value:

None

Examples:

int slot=1; // slot=1 or 2.

unsigned int led=0x0001;

18017_SetLed(slot, led);

// There will be a LED light on channel 0 of the I-8017HW card

// which is inserted in slot 1 (or 2) on the LinPAC.

LinPAC Standard API Manual version 1.3.1 Page: 304

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B [8017_SetChannelGainMode

Description:

This function is used to configure the range and mode of the analog input channel for the

[-8017HW modules in the specified slot before using the ADC (analog to digital converter).

Syntax:
[C]
void 18017_SetChannelGainMode (int slot,int ch,int gain,int mode)
Parameter:
slot: [Input] Specifies the slot where the I/0 module is inserted
Modules | LP-8x2x | LP-8x4x | LP-8x8x | LX-Series
Slot range 1~8 1~8 1~7 2~8
ch: [Input] Differential mode = Range 0 to 7 (I-8017H: Range 0 to 7)
Others: Single-ended mode - Range 0 to 15
gain: [Input] input range:
0: +/-10.0V
1:+/-5.0V
2:+/- 2.5V
3:+/-1.25V
4: +/- 20mA
mode: [Input] 0: normal mode (polling)

Return Value:

None

Examples:

int slot=1, ch=0, gain=0;

18017 _SetChannelGainMode(slot, ch, gain,0);

// The I-8017HW card is inserted in slot 1 or 2 of LinPAC, and the range of the data
// value from channel O for 1-8017H will be -10 to +10V.

LinPAC Standard API Manual version 1.3.1 Page: 305

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18017_GetFirmwareVersion

Description:

This function is used to get the lattice version of I-8017HW at specific slot.

Syntax:
[C]
int 1I8017_GetFirmwareVersion(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted (Range: 1 to 8)
*version [Output] version

Return Value:

>0: Version No.

<=0: Error.

Examples:

int slot=1, version;
version = 18017_ GetFirmwareVersion(slot);
printf(“1-8017 at Slot%d, firmware version= %d",slot, version);

// The I-8017HW card is inserted in slot 1 of LinPAC and initializes the module.

LinPAC Standard API Manual version 1.3.1 Page: 306

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18017_GetSingleEndJumper

Description:

This function is used to get the mode of input channels, single-ended or differential.

Syntax:
[C]
void 18017_GetSingleEndJumper(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted (Range: 1 to 8)

Return Value:

1: Single-Ended mode.

0: Differential mode.

Examples:

int slot=1;
18017_Init(slot);
printf(“mode=%d”, 18017_GetSingleEndJumper(slot));

LinPAC Standard API Manual version 1.3.1 Page: 307

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



E

Calibrated
Float Value

Read Not-Calibrated
Hex Value

Calibrated
Hex Value

~stgtsgsgegesey
FETTI I

I-8017H
8017H Flow Diagram

Figure 8.3.1-1. 1-8017H Flow Diagram

In order to provide convenience for the user, ICP DAS released a new version of the SDK for Linux
PAC at 2018, the new version API- 18017_ReadAl() and 18017_ReadAlHex() functions have

replaced following:
18017_GetCurAdChannel_Hex (int slot)
18017_AD_POLLING(int slot, int ch, int gain, unsigned int datacount, int *DataPtr)
18017_HEX_TO_FLOAT_Cal(int HexValue, int slot, int gain)
18017 _ARRAY_HEX_TO_FLOAT cal(int *HexValue, float *FloatValue, int slot, int gain, int len)
18017_Hex_Cal(int data)
18017_Hex_Cal_Slot_Gain(int slot, int gain, int data)
18017_CalHex_TO_FLOAT(int HexValue, int gain)
18017 _ARRAY_CalHex_TO_FLOAT(int *HexValue, float *FloatValue, int gain, int len)
18017_GetCurAdChannel_Hex_Cal(int slot)
18017_AD_POLLING_Cal(int slot, int ch, int gain, unsigned int datacount, int *DataPtr)
18017_GetCurAdChannel_Float_Cal(int slot)

For more details about new version API, please refer to the following website link:

https://www.icpdas.com/en/download/show.php?num=1869&model=1-8017HW-G

LinPAC Standard API Manual version 1.3.1 Page: 308

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com


https://www.icpdas.com/en/download/show.php?num=1869&model=I-8017HW-G

Function of [1]
B [8017_GetCurAdChannel_Hex

Description:

Obtains the non-calibrated analog input value in the Hex format from the analog input [-8017HW

modules.
Syntax:
[C]
int 18017_GetCurAdChannel_Hex (int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted

Return Value:

The analog input value in Hex format.

Examples:

int slot=1,ch=0,gain=4;

int data;

18017_SetChannelGainMode(slot, ch, gain,0);
data=18017_GetCurAdChannel_Hex(slot);

// The I-8017HW is inserted in slot 1 of LinPAC and the range of the data

// value from channel 0 in I-8017H is +/-20Ma.

LinPAC Standard API Manual version 1.3.1 Page: 309

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



H 18017_AD_POLLING

Description:

This function is used to get the analog input non-calibrated hex values of the specified channel

from an analog input module and can convert it to the value according to the slot configuration,

the gain and the data number.

Syntax:
[C]
int 1I8017_AD_POLLING(int slot,int ch,int gain,unsigned int datacount,int *DataPtr)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
ch: [Input] I-8017H: Range 0 to 7
Others: Single-ended mode - Range 0 to 15
Differential mode > Range O to 7
gain: [Input] Input range:
0: +/- 10.0V
1:+/-5.0V
2:+/- 2.5V
3:+/-1.25V
4: +/- 20Ma

datacount: [Input] Range from 1 to 8192, total ADCs number
*DataPtr: [Output] The starting address of data array[ ] and the array size

must be equal to or bigger than the datacount

Return Value:

0: Indicates success.

Not 0: Indicates failure.

LinPAC Standard API Manual version 1.3.1 Page: 310

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

int slot=1, ch=0, gain=0, data[10];
unsigned int datacount=10;
18017_AD_POLLING(slot, ch, gain, datacount, data);

// You gain ten not-calibrated hex values via channel 0 in the I-8017H module.

Remark:

(1) You can use ARRAY_HEX_TO_FLOAT_Cal() or HEX_TO_FLOAT_Cal() to calibrate the data

and convert to float value.

LinPAC Standard API Manual version 1.3.1 Page: 311

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Function of [2]
B 8017 _HEX_TO_FLOAT_Cal

Description:

This function is used to convert the data from not-calibrated hex to calibrated float values based

on the configuration of the slot, gain (Voltage or current).

Syntax:
[C]
float 18017_HEX_TO_FLOAT_Cal(int HexValue, int slot, int gain)
Parameter:
HexValue: [Input] Specified not-calibrated HexValue before converting
slot: [Input] Specified slot of the LinPAC system
gain: [Input] Input range:
0: +/- 10.0v
1:+/- 5.0V
2:+/- 2.5V
3:+/-1.25V
4: +/- 20Ma

Return Value:

The Calibrated Float Value.

Examples:

int slot=1, ch=0, gain=0, hdata;

float fdata;

18017 _SetChannelGainMode(slot, ch, gain,0);
hdata=18017_18017_GetCurAdChannel_Hex(slot);
fdata=18017_HEX_TO_FLOAT Cal(hdata, slot, gain);

// You can convert not-calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 312

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18017_ARRAY_HEX_TO_FLOAT Cal

Description:

This function is used to convert the data from non-calibrated hex values to calibrated float values

in the array mode based on the slot’s configuration (Voltage or current).

Syntax:

[C]
void 18017_ARRAY_HEX_TO_FLOAT_cal(int *HexValue,float *FloatValue,int slot,

int gain,int len)

Parameter:

*HexValue: [Input] Data array in not-calibrated Hex type before converting
*FloatValue: [Output] Converted data array in calibrated float type
slot: [Input] Specifies the slot where the I/0O module is inserted
gain: [Input] Input range:

0: +/- 10.0V

1:+/- 5.0V

2:4/-2.5V

3:+4/-1.25V

4: +/- 20Ma

len: [input] ADC data length

Return Value:

None

Examples:

int slot=1, ch=0, gain=0, datacount=10, hdata[10];

float fdata[10];

18017_SetChannelGainMode(slot, ch, gain,0);
18017_AD_POLLING(slot, ch, gain, datacount, data);
18017_ARRAY_HEX_TO_FLOAT_Cal(data, fdata, slot, gain, len);

// You can convert ten not-calibrated Hex values to ten calibrated Float values.

LinPAC Standard API Manual version 1.3.1 Page: 313

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B HEX_TO_FLOAT_Cal

Description:

This function is used to convert the data from not-calibrated hex to calibrated float values based

on the configuration of the slot, gain (Voltage or current).

Syntax:
[C]
float HEX_TO_FLOAT_Cal(int HexValue,int slot,int gain)
Parameter:
HexValue: [Input] Specified not-calibrated HexValue before converting
slot: [Input] Specified slot of the LinPAC Series system
gain: [Input] Input range:
0: +/-10.0V
1:+/- 5.0V
2:+/- 2.5V
3:+/-1.25V
4: +/- 20mA

Return Value:

The Calibrated Float Value.

Examples:

int slot=2, ch=0, gain=0, hdata;

float fdata;
18017_SetChannelGainMode(slot, ch, gain,0);
hdata=18017_GetCurAdChannel_Hex(slot);
fdata=HEX_TO_FLOAT_Cal(hdata, slot, gain);

// You can convert not-calibrated Hex Value to calibrated Float Value.

LinPAC Standard APl Manual version 1.3.1 Page: 314

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ARRAY_HEX_TO_FLOAT Cal

Description:

This function is used to convert the data from non-calibrated hex values to calibrated float values

in the array mode based on the slot’s configuration (Voltage or current).

Syntax:

[C]

void ARRAY_HEX_TO_FLOAT_cal(int *HexValue,float *FloatValue,int slot,int gain,int len)

Parameter:

*HexValue: [Input] Data array in not-calibrated Hex type before converting

*FloatValue: [Output] Converted data array in calibrated float type

slot: [Input] Specified slot of the LinPAC Series system
gain: [Input] Input range:
len: [input] ADC data length

Return Value:

None

Examples:

int slot=2, ch=0, gain=0, datacount=10, hdata[10];

float fdata[10];

18017_SetChannelGainMode(slot, ch, gain,0);
18017_AD_POLLING(slot, ch, gain, datacount, data);
ARRAY_HEX_TO_FLOAT_Cal(data, fdata, slot, gain, len);

// You can convert ten not-calibrated Hex values to ten calibrated Float values.

LinPAC Standard API Manual version 1.3.1 Page: 315

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Function of [3]
B 18017 _Hex_Cal

Description:

This function is used to convert the data from non-calibrated hex values to calibrated hex values

(Voltage or current). Please refer to Figure 8.3.1-1.

Syntax:
[C]
int 18017_Hex_Cal(int data)
Parameter:
data: [Input] Specified not-calibrated hex value

Return Value:

The Calibrated Hex Value.

Examples:

int slot=1, ch=0, gain=0, hdata;

int hdata_cal;
18017_SetChannelGainMode(slot, ch, gain,0);
hdata=18017_GetCurAdChannel_Hex(slot);
hdata_cal=18017_Hex_Cal(hdata);

// You can convert not-calibrated Hex Value to calibrated Hex Value.

LinPAC Standard API Manual version 1.3.1 Page: 316

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B [18017_Hex_Cal_Slot_Gain

Description:

This function is used to convert the data from non-calibrated hex values to calibrated hex values

based on the configuration of the slot, gain (Voltage or current).

Syntax:
[C]
int 18017_Hex_Cal_Slot_Gain(int slot,int gain,int data)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted
gain: [Input] Input range:
0: +/- 10.0v
1:+/- 5.0V
2:4/-2.5V
3:4/-1.25V
4: +/- 20Ma
data: [Input] Specified not-calibrated hex value

Return Value:

The Calibrated Hex Value.

Examples:

int slot=1, ch=0, gain=0, hdata;

int hdata_cal;

18017_SetChannelGainMode(slot, ch, gain,0);
hdata=18017_GetCurAdChannel_Hex(slot);
hdata_cal=18017_Hex_Cal_Slot_Gain(slot, gain, hdata);

// You can convert not-calibrated Hex Value to calibrated Hex Value according to the

// gain of slot you choose.

LinPAC Standard API Manual version 1.3.1 Page: 317

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Function of [4]
B 18017_CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values

based on the configuration of the gain (Voltage or current).

Syntax:
[C]
float 18017_CalHex_TO_FLOAT(int HexValue,int gain)
Parameter:
HexValue: [Input] Specified not-calibrated HexValue before converting
gain: [Input] Input range:
0: +/- 10.0V
1:+/- 5.0V
2:+/- 2.5V
3:+/-1.25V
4: +/- 20Ma

Return Value:

The Calibrated Float Value.

Examples:

int slot=1, ch=0, gain=0, hdata, hdata_cal;

float fdata;

18017 _SetChannelGainMode(slot, ch, gain,0);
hdata=18017_GetCurAdChannel_Hex(slot);
hdata_cal=18017_HEX_Cal(hdata);
fdata=18017_CalHex_TO_FLOAT(hdata_cal, gain);

// You can convert calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 318

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18017 _ARRAY_CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values in

the array mode based on the configuration of the gain (Voltage or current).

Syntax:

[C]

void 18017_ARRAY_CalHex_TO_FLOAT(int *HexValue,float *FloatValue,int gain,int len)

Parameter:

*HexValue: [Input] Data array in calibrated Hex format
*FloatValue: [Output] Converted data array in calibrated float format
gain: [Input] Input range:
0: +/- 10.0V
1:+/- 5.0V
2:+/- 2.5V
3:+4/-1.25V
4: +/- 20Ma
len: [input] ADC data length

Return Value:

The Calibrated Float Value.

Examples:

int slot=1, ch=0, gain=0, hdata_cal[10];
float fdata[10];
fdata=18017_ARRAY_ CalHex_TO FLOAT(hdata_cal, fdata, gain, len);

// You can convert ten calibrated Hex Values to ten calibrated Float Values.

LinPAC Standard APl Manual version 1.3.1

Page: 319

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values

based on the configuration of the gain (Voltage or current).

Syntax:
[C]
float CalHex_TO_FLOAT(int HexValue,int gain)
Parameter:
HexValue: [Input] Specified not-calibrated HexValue before converting
gain: [Input] Input range:
0: +/- 10.0v
1:+/- 5.0V
2:4/-2.5V
3:4/-1.25V
4: +/- 20mA

Return Value:

The Calibrated Float Value.

Examples:

int slot=1, ch=0, gain=0, hdata, hdata_cal;
float fdata;
18017_SetChannelGainMode(slot, ch, gain,0);
hdata=18017_GetCurAdChannel_Hex(slot);

hdata_cal=18017_HEX_Cal(hdata);
fdata=CalHex_TO_FLOAT(hdata_cal, gain);

// You can convert calibrated Hex Value to calibrated Float Value.

LinPAC Standard API Manual version 1.3.1 Page: 320

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B ARRAY_CalHEX_TO_FLOAT

Description:

This function is used to convert the data from calibrated hex values to calibrated float values in

the array mode based on the configuration of the gain (Voltage or current).

Syntax:
[C]
void ARRAY_CalHex_TO_FLOAT(int *HexValue,float *FloatValue,int gain,int len)
Parameter:
*HexValue: [Input] Data array in calibrated Hex format

*FloatValue: [Output] Converted data array in calibrated float format
gain: [Input] Input range:
len: [input] ADC data length

Return Value:

The Calibrated Float Value.

Examples:

int slot=1, ch=0, gain=0, hdata_cal[10];
float fdata[10];
fdata=ARRAY_CalHex_TO_FLOAT(hdata_cal, fdata, gain, len);

// You can convert ten calibrated Hex Values to ten calibrated Float Values.

LinPAC Standard API Manual version 1.3.1 Page: 321

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Function of [1]+[2]
B 18017_GetCurAdChannel_Float_Cal

Description:

Obtains the calibrated analog input value in the Float format directly from the analog input
modules. This function is a combination of the ‘18017_GetCurAdChannel_Hex’ and the

‘Hex_TO_FLOAT_Cal’ function.

Syntax:
[C]
int 1I8017_GetCurAdChannel_Float_Cal(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted

Return Value:

The analog input value in Calibrated Float format.

Examples:

int slot=1,ch=0,gain=0;

float data;

18017_SetChannelGainMode(slot, ch, gain,0);
data=I8017_GetCurAdChannel_Float_Cal(slot);

// The I-8017HW is inserted in slot 1 of LinPAC and the range of the

// data value from channel 0 in I-8017H is -10V to +10V.

LinPAC Standard API Manual version 1.3.1 Page: 322

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Function of [1]+[3]
B 18017_GetCurAdChannel_Hex_Cal

Description:

Obtain the calibrated analog input values in the Hex format directly from the analog input
modules. This function is a combination of the ‘18017_GetCurAdChannel_Hex’ and the

‘18017_Hex_Cal’ function.

Syntax:
[C]
int 18017_GetCurAdChannel_Hex_Cal(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted

Return Value:

The analog input value in Calibrated Hex format.

Examples:

int slot=1,ch=0,gain=0, data;

18017_SetChannelGainMode(slot, ch, gain,0);
data=18017_GetCurAdChannel_Hex_Cal(slot);

// The I-8017H card is inserted in slot 1 of LinPAC and the range of the
// data value from channel 0 in 1-8017H is 0x0000 to 0x3fff.

LinPAC Standard API Manual version 1.3.1 Page: 323

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



H 18017_AD_POLLING_Cal

Description:

This function is used to get the analog input calibrated hex values in the array mode from an
analog input module and can convert according to the slot configuration value, the gain and the

data number.

Syntax:
[C]
int 1I8017_AD_POLLING_Cal(int slot,int ch,int gain,unsigned int datacount,int *DataPtr)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted
ch: [Input] I-8017H: Range 0 to 7
Others: Single-ended mode - Range 0 to 15
Differential mode > Range 0 to 7
gain: [Input] Input range:
0: +/-10.0V
1:+/-5.0V
2:+/- 2.5V
3:+/-1.25V
4: +/- 20Ma

datacount: [Input] Range from 1 to 8192, total ADCs number
*DataPtr: [Output] The starting address of data array[ ] and the array size

must be equal to or bigger than the datacount.

Return Value:

0: The function was successfully processed.
Other: The processing failed.

Refer to Chapter 6: ‘Error Code Definitions’ for details of other returned values.

LinPAC Standard APl Manual version 1.3.1 Page: 324

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



Examples:

int slot=1, ch=0, gain=0, data[10];
unsigned int datacount=10;
18017 _AD_POLLING_Cal(slot, ch, gain, datacount, data);

// You gain ten calibrated hex values via channel 0 in the 1-8017HW module.

LinPAC Standard API Manual version 1.3.1 Page: 325

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



C2.1-8024 API Function
B 18024 _Initial

Description:

This function is used to initialize the 1-8024W module in the specified slot. You must implement

this function before you try to use the other [-8024 functions.

Syntax:
[C]
void 18024 _Initial(int slot)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
Modules | LP-8x2x | LP-8x4x | LP-8x8x | LX-Series
Slot range 1~8 1~8 1~7 2~8

Return Value:

None

Examples:

int slot=1;

18024 _Initial(slot);

// The 1-8024W is inserted in slot 1 of LinPAC and initializes the 1-8024W module.

LinPAC Standard APl Manual

version 1.3.1

Page: 326

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved.

E-mail: service@icpdas.com



B 18024_VoltageOut

Description:

This function is used to send the voltage float value to the 1-8024W module with the specified

channel and slot in the LinPAC system.

Syntax:
[C]
void 18024_VoltageOut(int slot,int ch,float data)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted
Modules | LP-8x2x | LP-8x4x | LP-8x8x | LX-Series
Slot range 1~8 1~8 1~7 2~8
ch: [Input] Output channel (Range: 0 to 3)
data: [Input] Output data with engineering unit (Voltage Output: -10 to +10)

Return Value:

None

Examples:

int slot=1, ch=0;

float data=3.0f;

18024 _VoltageOut(slot, ch, data);

// The I-8024W module output the 3.0V voltage from the channel 0.

LinPAC Standard API Manual version 1.3.1 Page: 327

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18024_CurrentOut

Description:

This function is used to initialize the 1-8024W module in the specified slot for current output.

Users must call this function before trying to use the other 1-8024W functions for current output.

Syntax:
[C]
void 18024_CurrentOut(int slot, int ch, float cdata)
Parameter:
slot: [Input] Specifies the slot where the I/0O module is inserted
Modules LP-8x2x | LP-8x4x | LP-8x8x | LX-Series
Slot range 1~8 1~8 1~7 2~8
ch: [Input] Output channel (Range: 0 to 3)
cdata: [Input] Output data with engineering unit (Current Output: 0 to 20 mA)

Return Value:

None

Examples:

int slot=1, ch=0;

float cdata=10.0f;

18024 _CurrentOut(slot, ch, data);

// Output the 10.0Ma current from the channel 0 of 1-8024W module.

LinPAC Standard API Manual version 1.3.1 Page: 328

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18024_VoltageHexOut

Description:

This function is used to send the voltage value in the Hex format to the specified channel in the

1-8024W module, which is inserted in the slot in the LinPAC system.

Syntax:
[C]
void 18024_VoltageHexOut(int slot,int ch,int hdata)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
Modules LP-8x2x | LP-8x4x | LP-8x8x | LX-Series
Slot range 1~8 1~8 1~7 2~8
ch: [Input] Output channel (Range: 0 to 3)
hdata: [Input] Output data with hexadecimal

(data range: Oh to 3FFFh - Voltage Output: -10 to 10V)

Return Value:

None

Examples:

int slot=1, ch=0; data=0x3000;
18024 VoltageHexOut(slot, ch, data);
// The 1-8024W module output the 5.0V voltage from the channel 0.

LinPAC Standard APl Manual version 1.3.1

Page: 329

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



B 18024_CurrentHexOut

Description:

This function is used to send the current value in the Hex format to the specified channel in the

analog output module I1-8024W, which is plugged into the slot in the LinPAC system.

Syntax:
[C]
void 18024_CurrentHexOut(int slot,int ch,int hdata)
Parameter:
slot: [Input] Specifies the slot where the I/O module is inserted
Modules | LP-8x2x | LP-8x4x | LP-8x8x | LX-Series
Slot range 1~8 1~8 1~7 2~8
ch: [Input] Output channel (Range: 0 to 3)
hdata: [Input] Output data with hexadecimal

(data range: Oh to 3FFFh = Current Output: 0 to +20mA)

Return Value:
None

Examples:

int slot=1, ch=0; data=0x2000;
18024 CurrentHexOut(slot, ch, data);
// Output the 10.0Ma current from the channel 0 of I-8024W module.

LinPAC Standard API Manual version 1.3.1 Page: 330

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



D. Revision History

This chapter provides revision history information to this document.

The table below shows the revision history.

Revision Date Description
vV1.0.0 Apr 2019 Initial issue
V1.1.0 May 2021 Update SDK download link and wdt function
Vii.1i October 2021 | Update WDT function
1. SDK for Linux platform is running for 32 bit OS
V1.2.0 | December 2021
2. Modify unit for wTimeout and *wT parameter
V1.2.1 | December 2022 | Add two API function for Low Pass Filter Module of 1-9000

LinPAC Standard APl Manual

version 1.3.1 Page: 331

Copyright © 2019 ICP DAS Co., Ltd. All Rights Reserved. E-mail: service@icpdas.com



