I-8017/I-9017 Series I/O Module User Manual

V 3.0.1, Nov. 2018

Written by Edward Wu Edited by Anna Huang All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year, beginning from the date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for any damage resulting from the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright © 2018 by ICP DAS Co., Ltd. All rights are reserved.

Trademarks

Names are used for identification purposes only and may be registered trademarks of their respective companies.

Contact Us

If you have any problems, please feel free to contact us. You can count on us for a quick response. Email: service@icpdas.com

Table of Contents

Tabl	e of Conte	ents				
1.	Introduct	tion	5			
	1.1.	Spec	cifications7			
	1.2.	Pin /	Assignments9			
	1.3.	Jum	per Settings15			
	1.4.	Wire	e Connections			
	1.5.	Bloc	k Diagram22			
2.	Quick Sta	art				
	2.1.	Min	iOS7-based Controllers25			
	2.2.	Win	dows-based Controllers27			
3.	Demo Pr	ogran	ns30			
4.	API Refer	rence	s			
	4.1.	pac_	_i8017HW_Init35			
	4.2.	pac_	_i8017HW_GetFirmwareVersion37			
	4.3.	pac_	_i8017HW_GetLibVersion39			
	4.4. pac_		_i8017HW_GetLibDate40			
	4.5. pac_		_i8017HW_GetSingleEndJumper42			
	4.6. pac_		_i8017HW_ReadAI44			
	4.7. pac		_i8017HW_ReadAI_AVG46			
	4.8. pac		_i8017HW_ReadAlHex48			
	4.9. pac		_i8017HW_ReadAlHex_AVG51			
	4.10. pac		_i8017HW_ReadGainOffset_Info53			
	4.11. pac		_i8017HW_Read_mA_GainOffset55			
	4.12. pac		_i8017HW_Select_SingleEnd57			
	4.13. pac_		_i8017HW_Get_D_Sub_Status59			
5.	Calibratio	on				
	5.1.	Min	iOS7-based Controller63			
	5.1.1.		Calibrating on i-8000 and iPAC-800064			
	5.1.2.		Verifying the Calibration70			
	5.1.3.		Restoring the Default Calibration Settings71			
	5.2.	Win	dows-based Controllers72			
	5.2.	1.	Calibrating on WinCE and WES PAC Units73			
	5.2.	2.	Verifying the Calibration77			
	5.2.	3.	Restoring the Default Calibration Settings78			
6.	Troubles	hooti	ng79			

6.1.	Verifying Analog Input functionality on a WinCE or WES PAC device	80				
6.2.	Service Request Requirements	83				
6.3.	What to do when the data read from the module seems unstable	84				
Appendix A. Error Code						
Appendix B. Read Al Function Performance86						
Appendix C. I	Appendix C. Revision History					

1. Introduction

The I-8017W/I-9017 I/O modules are high performance analog input module, up to 16-channel single-ended or 8-channel differential inputs. It features 14-bit resolution, 90Ks/s sampling rates. It provides isolation protection of 2500 Vrms.

The I-8017 I/O modules can be used to measure both voltage and current source. The I-8017DW and I-8017HCW modules include a Jumper that can be used to set the discrete input circuits to add a125 Ω resistor, so it's not necessary to add external resistor for Differential input. For the I-8017HWan optional external 125 Ω resistor is required to measure the current source.

Applications

- High speed data acquisition systems
- Process monitoring and control
- Vibration analysis
- Digital pattern generator from the digital I/O port

Applicable Platform table

The following table shows which platform the module applies to.

Platform	OS	Module	
XPAC	XP-8000(WES)	I-8017HW/I-8017DW/I-8017HCW	
	XP-8000-Atom (WES)	I-8017HW/I-8017DW/I-8017HCW	
	XP-8000-WES7 (WES7)	I-8017HW/I-8017DW/I-8017HCW	
	XP-8000-CE6 (WinCE 6.0)	I-8017HW/I-8017DW/I-8017HCW	
	XP-8000-Atom-CE6 (WinCE 6.0)	I-8017HW/I-8017DW/I-8017HCW	
	XP-9000-WES7(WES7)	I-9017/I-9017-15/I-9017C-15	
WinPAC	WP-8000 (CE 5.0/7.0)	I-8017HW/I-8017DW/I-8017HCW	
	WP-9000-CE7 (CE 7.0)	I-9017/I-9017-15/I-9017C-15	
LinPAC	LinPAC-8000(Linux kernel 3.2/4.4)	I-8017HW/I-8017DW/I-8017HCW	
	LinPAC-9000(Linux kernel 3.2/4.4)	I-9017/I-9017-15/I-9017C-15	
IPAC	iPAC-8000 (MiniOS7)	I-8017HW/I-8017DW/I-8017HCW	
	I-8000(MiniOS7)	I-8017HW/I-8017DW/I-8017HCW	

The I-8017DW module is equipped with a D-sub connection, meaning that it can be connected using a 37-pin D-sub Connector, as shown in the image below:

For more detailed information regarding 37-pin D-sub Connectors refer to the models indicated in the table below:

Model	Description
DN-37-A	I/O Connector Block with DIN-Rail Mounting and 37-pin D-sub Connector (Pitch: 5.08 mm)
DN-37-381-A	I/O Connector Block with DIN-Rail Mounting and 37-pin D-sub Connector (Pitch: 3.81 mm)
CA-3705A	Male-Female D-sub Cable 0.5 m
CA-3710A	Male-Female D-sub Cable 1 m
CA-3715A	Male-Female D-sub Cable 1.5 m

1.1. Specifications

I-8017HW/I-8017HCW/I-8017DW

Model	I-8017HW I-8017DW I-8017HCW				
Analog Output					
Channels	8-ch Differential/16-Single-ended				
Voltage Input Range	±1.25, ±2.5, ±5 V, ±10 V -				
Current Input Range	±20 mA		±20 mA		
	(Requires OptionalExt	ernal 125 Ω Resistor)	(Jumper Select)		
Resolution	14-bit				
Sample Rate	Single Channel Polling	g Mode :90K S/s			
	Single Channel Interru	upt Mode: 50K S/s			
	8 channel Scan Mode	: 16 K S/s			
Accuracy	0.1% of FSR				
Zero Drift	± 0.1 uV/°C				
Span Drift	± 10 ppm/°C				
ESD Protection	±4 kV Contact for each Terminal				
Input Impedance	20 K, 200 K, 20 M (Jumper Select)				
Input Bandwidth	Bandwidth 100 KHz				
Connector	20 Pin Terminal Block				
LED Indicators	1				
System LED Indicator	1 LED as Power Indica	tor			
I/O LED Indicator	16 LEDs as User defin	ed Indicators			
Isolation					
Intra-module Isolation, Field-to-Logic	2500 Vrms				
Power					
Power Consumption	2 W Max.				
Mechanical					
Dimension (L x W x H)	102 mm x 30 mm x 115 mm				
Environment					
Operating Temperature	-25 °C ~ +75°C				
Storage Temperature	-30 °C ~ +80°C				
Humidity	10% ~ 90% RH, non-co	ondensing			

I-9017/I-9017-15/I-9017C-15

Model	I-9017	I-9017-15	I-9017C-15		
Analog Output					
Channels	8 Differential/	15 Differential/	15 Differential		
	16 Single-ended	30 Single-ended			
Voltage Input Range	±1.25, ±2.5, ±5 V, ±2	10 V	-		
Current Input Range	±20 mA		±20 mA		
	(Requires OptionalE	xternal 125 Ω Resistor)			
Resolution	14-bit				
Sample Rate	Single Channel Pollir	ng Mode :90K S/s			
	Single Channel Inter	rupt Mode: 50K S/s			
	15-channel Scan Mo	de : 16 K S/s			
Accuracy	0.1% of FSR				
Input Bandwidth	100 KHz				
Zero Drift	± 0.1 uV/°C				
Span Drift	± 10 ppm/°C				
Input Impedance	20 K, 200 K, 20 M (Jumper Select) -				
LED Indicators	1				
System LED Indicator 1 LED as Power Indicator					
I/O LED Indicator	16 LED as Status				
	Indicator				
EMS Protection	I				
	±4 kV Contact for ea	ach Terminal			
	±8 kV Air for Random Point				
Isolation					
Intra-module Isolation, Field-to-Logic	2500 Vrms				
Power					
Power Consumption	2 W Max.				
Mechanical					
Dimension (L x W x H)	144 mm x 30.3 mm :	x 134 mm			
Environment					
Operating Temperature	-25 °C ~ +75°C				
Storage Temperature	-40°C ~ +85°C				
Humidity	10 % ~ 90% RH, non-condensing				

1.2. Pin Assignments

I-8017HW:

HUA D D L/A		3 4	5 8		
1		F		H	
Tri			0		
AG			0		
Vit		ш	0	8	
- Vie		н	0	l Fi	
Vit		ш	0		
Vir		Ш	0		
Vir		Ш	0		
Vie		Ш	0		
Vie		Ш	0		
Vir		Ш	0		
- Vie			\bigcirc		
Vir		ш	Q		
Vie		ш	Q		
Vie		Ш	Q		
Vir		ш	Q		
Vir		Ш	Q		
Vit			2		
Vit			Q		
AG			Q		
100	IND		(\cap)		1

Terminal No.	Pin Assignment Name				
Terminal No.	Differential	Single-ended			
[=] 01	Trig	Trig			
C. 02	AGND	AGND			
[□] 03	∨in0 +	Vin0			
C= 04	Vin0 -	Vin8			
C 05	Vin1 +	Vin1			
06	Vin1 -	Vin9			
C 07	∨in2 +	Vin2			
C 08	Vin2 -	Vin10			
C 🔍 09	∨in3 +	Vin3			
[10	Vin3 -	Vin11			
Ը 🔍 11	∨in4 +	Vin4			
[<u>-</u>] 12	Vin4 -	Vin12			
C 🖳 13	∨in5 +	Vin5			
[<u>14</u>	Vin5 -	Vin13			
C 15	∨in6 +	Vin6			
L 16	Vin6 -	Vin14			
C. 🖸 17	∨in7 +	Vin7			
L 18	Vin7 -	Vin15			
C 19	AGND	AGND			
20	AGND	AGND			

I-8017HCW:

HØ	0 1 2	3 4	5 6	, , ,
		l		₽ ∦∥
			8	
			8	
-			X	
1			X	
1			X	
			ð	
			Ó	
			Ó	
1				
1				
			Q	
	Vin5+		8	
			8	
			X	
	Vin7+		X	
			a	
			Ø	
			X	

Terminal No		Pin Assignment			
remina	NO.	Differential	Single-ended		
600	01	Trig	Trig		
L .	02	AGND	AGND		
C.	03	Vin0+	Vin0		
60	04	Vin0-	Vin8		
C.	05	Vin1+	Vin1		
C ·	06	Vin1-	Vin9		
C	07	Vin2+	Vin2		
C.	08	Vin2-	Vin10		
C D (09	Vin3+	Vin3		
C.	10	Vin3-	Vin11		
C.	11	Vin4+	Vin4		
Co (12	Vin4-	Vin12		
C.	13	Vin5+	Vin5		
C.	14	Vin5-	Vin13		
C. O	15	Vin6+	Vin6		
C o (16	Vin6-	Vin14		
20	17	Vin7+	Vin7		
20	18	Vin7-	Vin15		
C.	19	AGND	AGND		
C.	20	AGND	AGND		

I-8017DW:

-

1 2	34	5 6 7	
19		37	
1		20	

Pin Assignment			erminal N	lo.	Pin A	ssignment
Differential	Single-ended				Differential	Single-ended
AGND	AGND	19	0	27	PK Concor	PK Sansar
Trig	Trig	18	00	00	DK Selisui	DK Selisui
AI7-	Ai15	17	0	30	-	
AI7+	AI7	16	0 0	35	•	•
A16-	AI14	15	0	34	•	-
AI6+	A16	14	60	33	-	-
AI5-	AI13	13	00	32	-	•
AI5+	A15	12	00	31	-	-
A14-	AI12	11	0	30	-	
A14+	A14	10	0	29	-	-
AI3-	AI11	09	0	28	(. . .)	-
AI3+	A13	08	0	27	-	-
A12-	AI10	07	0	26	-	•
A12+	A12	06	0	25		-
A12 ·	A12 A10	05	0	24	-	-
A11-	A19	0.0	0	23	-	-
ALLT	ALL	04	0	22	-	-
AIU-	AIO	03	0	21	AGND	AGND
AIU+	AIU	02	0	20	AGND	AGND
BK Sensor	BK Sensor	01	0	1		

I-9017:

8

+	Pin Assignr	nent		Tormina	I No		Pin Assignment			
i-9017	Differential Single- ended			Termina	1 140.		Differential Single ender			
1988	Trig+	Trig+	1			11	Trig-	Trig-		
UA	V0+(I0+)	Vin0	2			12	V0-(I0-)	Vin8		
	V1+(I1+)	Vin1	3			13	V1-(I1-)	Vin9		
	V2+(I2+)	Vin2	4			14	V2-(I2-)	Vin10		
	V3+(I3+)	Vin3	5			15	V3-(I3-)	Vin11		
0 0	V4+(I4+)	Vin4	6		E	16	V4-(I4-)	Vin12		
	V5+(I5+)	Vin5	7			17	V5-(I5-)	Vin13		
	V6+(I6+)	Vin6	8			18	V6-(I6-)	Vin14		
V2+ V2-	V7+(I7+)	Vin7	9			19	V7-(I7-)	Vin15		
V++ V+ V5+ V5-	AGND	AGND	10			20	AGND	AGND		

I-9017-15:

Ð	Pin Assignment			Terminal No.		Pin Assignment		
i -9017	V0+	Vin0	01		17	V0 -	Vin15	
30 CH AI	V1+	Vin1	02		18	V1 -	Vin16	
	V2+	Vin2	03		19	V2 -	Vin17	
	V3+	Vin3	04		20	V3 -	Vin18	
	V4+	Vin4	05		21	V4 -	Vin19	
1 17	V5+	Vin5	06		22	V5 -	Vin20	
0 0	V6+	Vin6	07		23	V6 -	Vin21	
V0+ V0-	V7+	Vin7	08		24	V7 -	Vin22	
V2+ V2- V3+ V3-	V8+	Vin8	09		25	V8-	Vin23	
VH+ VH V5+ V5-	V9+	Vin9	10		26	V9 -	Vin24	
V6+ V6- V7+ V7-	V10+	Vin10	11		27	V10 -	Vin25	
V8+ V8- V9+ V9-	V11+	Vin11	12		28	V11 -	Vin26	
VI0+ VI0- VI1+ VI1-	V12+	Vin12	13		29	V12 -	Vin27	
VI3+ VI3-	V13+	Vin13	14		30	V13 -	Vin28	
Haro Haro	V14+	Vin14	15		31	V14 -	Vin29	
16 32	AGND	AGND	16		32	AGND	AGND	
					3	2-pin Conn	ector	

I-9017C-15:

Ð	Pin Assignment		Terminal No.		Pin Assignment
7-9017C	I0+	01		17	IO -
PWR	I1+	02		18	I1 -
	I2+	03		19	I2 -
	I3+	04		20	I3 -
	I4+	05		21	I4 -
	I5+	06		22	I5 -
1	I6+	07		23	I6 -
	I7+	08		24	17 -
	I8+	09		25	I8-
	I9+	10		26	I9 -
	I10+	11		27	I10 -
	I11+	12		28	I11 -
	I12+	13		29	I12 -
	I13+	14		30	I13 -
16-32	I14+	15		31	I14 -
	AGND	16		32	AGND
				32-p	in Connector

1.3. Jumper Settings

I-8017HW

Single-ended and Differential Jumper:

This jumper is used to set the discrete input circuits as either "Single-ended" or "Differential" inputs.

Adjusting the Input impedance

Select Input Impedance: 200 kΩ (Default)

Note: 1. The Jumpers should set on the same value 2. Input Impedance = 2 x setting value

The I-8017 series modules allows three input impedance options including as $20 \text{ k}\Omega$, $200 \text{k}\Omega$ (the default setting) and $20M\Omega$ to meet system requirements.

In most cases, $200k\Omega$ is sufficient. Note that each time the input impedance is adjusted on a calibrated module, the module must be recalibrated. For more details, refer to the relevant Calibration information, which can be found in Section 5.1 if you are using either an I-8000 or iPAC-8000 (MiniOS7 platform) controller, or in Section 5.2 if you are using a WinCE or WES platform unit.

I-8017HCW /I-8017DW/ I-9017

 125Ω Resistor Jumper

By default, the I-8017HCW module is configured for current source measurement, and the I-8017DW is configured for voltage measurement, as illustrated below:

The default jumper position for current measurement on the I-8017HCW

The jumper settings used to adjust both the input impedance and the single-ended and differential input on the I-8017HW are the same as those for the I-8017DW,I-8017HCW and the I-9017.

The default jumper position for voltage measurement on the I-9017

1.4. Wire Connections

I-9017

	Voltage Input Wiring	Current Input Wiring
Differential	$mV/V \xrightarrow{+}V \qquad \square \bigoplus \qquad Vin+ \\ \square \bigoplus \qquad Vin-$	The second s
Single-ended	mV/V V III AGND	

Note:

Differential Input Type: Current Input Wiring need to jumper at current input.

Single-ended Input Type: Current Input Wiring need to jumper at voltage input, an options external 125 Ω resistor is required.

I-8017HW/I-9017-15:

	Voltage Input Wiring	Current Input Wiring		
Differential	mV/V - V	$ \begin{array}{c c} $		
Single-ended	mV/V + V □⊖ Vin □⊖ AGND	$ \begin{array}{c c} $		

Note:

When connecting to a current source, an optional external 125 Ω resistor is required.

I-8017DW/I-8017HCW

	Voltage Input Wiring	Current Input Wiring
Differential	$mV/V \stackrel{+}{\underline{\vee}} \underbrace{\square \bigoplus}_{\square \bigoplus} Vin+Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-$	↑ ↓
Single-ended	mV/V + V □⊖ Vin □⊖ AGND	$ \begin{array}{c c} $

Note:

Differential Input Type: Current Input Wiring need to jumper at current input.

Single-ended Input Type: Current Input Wiring need to jumper at voltage input, an options external 125 Ω resistor is required.

I-9017C-15

	Current Input Wi	ring
Differential		
		I+
		I-

1.5. Block Diagram

I-8017HW/I-8017DW/I-8017HCW:

I-9017C-15

2. Quick Start

This section provides a Getting Started guide when using on either the MiniOS7 or Windows platforms.

- For MiniOS7-based Controllers, see section 2.1 (i-8000 and iPAC-8000 modules)
- For Windows-based Controllers, see section 2.2 (WinCE and WES modules)

2.1. MiniOS7-based Controllers

The 8017ai.exe executable file, which is located in the 8017h_ReadAl folder of the demo programs, can be used to retrieve the basic configuration information related to the module and to verify the Al read functions. The basic configuration information includes:

- The version number and the published date of the library.
- The FPGA version
- The Differential/Single-ended jumper settings
- The Gain and Offset values for each input range
- The data read from each channel

(See the Location of the Demo Programs section for details of where to find the 8017ai.exe file in the demo programs path)

- **Step 1.** Refer to the Jumper Settings section. Ensure that the Differential/Single-ended selection jumper is in the Differential position.
- **Step 2.** Connect a stable signal source to the module (e.g., a battery output) using the differential wiring method, as illustrated below.

Step 3. Connect the power supply to the module, and connect the control unit to the Host PC using an RS-232 cable.

Step 4. Launch the 8017ai.exe executable file on the Host PC, and then verify that the basic information and the AI data from each channel is correct, as indicated in the diagram below:

Unused channels should be connected to GND to avoid floating.

2.2. Windows-based Controllers

The pac_i8017HW_Utility.exe executable file, which is located in the pac_i8017HW_Utility folder of the demo programs, can be used to retrieve the basic configuration information related to the module, and to verify the AI read functions. The basic configuration information includes:

- The version number and the published date of the library.
- The FPGA version
- The Differential/Single-ended jumper settings
- The Gain and Offset values for each input range
- The data read from each channel

(See the Location of the Demo Programs section for details of where to find the 8017ai.exe file in the demo programs folder)

- **Step 1.** Refer to the Jumper Settings section. Ensure that the Differential/Single-ended selection jumper is in the Differential position.
- **Step 2.** Connect a stable signal source to the module (e.g., a battery output) using the differential wiring method, as illustrated below.

- Step 3. Insert the module into a vacant slot in the control unit and power on the PAC controller
- **Step 4.** Launch the pac_i8017HW_Utility.exe executable file on the controller, and then verify that the basic information and the AI data read from each channel is correct, as indicated in the diagram below:

Tips & Warnings

Unused channels should be connected to GND to avoid floating, it may get some noise values..

Read the FPGA version information and the Gain and Offset values for each voltage range

HW Slo	it Index	· [Slot 3 🛛	•					
Informa	ation 🛛	AI Test							
ary Vers	sion 30)01	Refre	sh					
ware	18	- 11	Sav	e		Library and Single-end	EPGA version informa ed/differential jumper p	tion. osition	
le-Ende	ed/ Diffe	erential	Differential						
10V	Gain	33636	Offset	-90					
57	Gain	33632	Offset	-88					
2.5V	Gain	33639	Offset	-85					
1.25V	Gain	33628	Offset	-75					
20mA	Gain	33639	Offset	-85					
		L	The gai value va means t	n value is ar aries signific hat the valu	round 3300 cantly from ue is incorre	D. If this 33000, it ect			

Read the AI information from each channel

orm:	L									_	
I-801	.7HW Slot I	no	dex	Slot 3	•						
Basi	c Informati	on	AI Tes	t							
Gain	+/- 10.0 \	/	🔻 Co	unt 100	00	For	mat Floa	at 💌			
F	Eirot Doto		in Datr	/erify the AL	data from ea	ch chan	nel	Min Data	Max Data	Delta	
00	00.0012	Ŀ	0.001				-				
C1	00.0000	G	0.0000	00.0024	00.0024	C9					
C2	00.0000	-	0.0012	00.0024	00.0036	C10					
C3	00.0012	-	0.0012	00.0037	00.0049	C11					
24	00.000	C	0.0000	00.0037	00.0037	C12					
C5	00.0012	Ē	0.0012	00.0024	00.0036	C13					
C6	00.0012	Ē	0.0012	00.0024	00.0036	C14					
27	00.0012	Ē	0.0012	00.0024	00.0036	C15					
	Start			Time Ti	icks 31			Save			

3. Demo Programs

ICP DAS provides a range of demo programs for different platforms that can be used to verify the functions of the module. The source code contained in these programs can also be reused in your own custom programs if needed. The following is a list of the locations where both the demo programs and associated libraries can be found on either the ICP DAS web site or the enclosed CD.

Platform	Location
For I-8000	
Library	CD:\Napdos\8000\841x881x\demo\Lib or
LIDIALY	ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/8000/841x881x/demo/lib/
Domo	CD:\Napdos\8000\841x881x\demo\IO_in_Slotor <u>ftp://ftp.icpdas.com/pub/cd/8000cd/</u>
Demo	napdos/8000/841x881x/demo/io in slot/
For iPAC-800	0
	CD:\Napdos\iPAC8000\Demo\Basic\iP-84x1_iP-88x1\Lib or
Library	ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/ip-84x1_ip-88x1/li
	<u>b/</u>
	CD:\Napdos\iPAC8000\Demo\Basic\iP-84x1_iP-88x1\IO_in_Slot or
Demo	ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/ip-84x1_ip-88x1/i
	<u>o in slot/</u>
For Window	s CE5
Library	CD:\napdos\wp-8x4x_ce50\sdk\IO_Modules or
LIDIALY	ftp://ftp.icpdas.com/pub/cd/winpac/napdos/wp-8x4x_ce50/sdk/io_modules/
	eVC Demo:
	CD:\napdos\wp-8x4x_ce50\Demo\WinPAC\eVC\IO\Local or
	ftp://ftp.icpdas.com/pub/cd/winpac/napdos/wp-8x4x_ce50/demo/winpac/evc/io/loc
Demo	<u>al/</u>
Demo	C# Demo:
	CD:\napdos\wp-8x4x_ce50\Demo\WinPAC\C#\IO\Local or
	ftp://ftp.icpdas.com/pub/cd/winpac/napdos/wp-8x4x_ce50/demo/winpac/c%23/io/lo
	cal/

For WP-9000	
Library	CD:\WinPAC_AM335x\wp-9000\SDK\IO_Modules
Library	ftp://ftp.icpdas.com/pub/cd/winpac_am335x/wp-9000/sdk/io_modules/
	VC2008 Demo:
	CD:\WinPAC_AM335x\wp-9000\demo\PAC\Vc2008\IO\Local
Domo	ftp://ftp.icpdas.com/pub/cd/winpac_am335x/wp-9000/demo/pac/vc2008/io/local/
Demo	C# Demo:
	CD:\WinPAC_AM335x\wp-9000\demo\PAC\C#\IO\Local
	ftp://ftp.icpdas.com/pub/cd/winpac_am335x/wp-9000/demo/pac/c%23/io/local/
For XP-8000	-CE6
Librow	CD:\SDK\Special_IO
Library	ftp://ftp.icpdas.com/pub/cd/xp-8000-ce6/sdk/special_io/
	VC2005 Demo:
	CD:\Demo\XPAC\VC2005\IO\Local
Domo	ftp://ftp.icpdas.com/pub/cd/xp-8000-ce6/demo/xpac/vc2005/io/local/
Demo	C# Demo:
	CD:\Demo\XPAC\C#\IO\Local
	ftp://ftp.icpdas.com/pub/cd/xp-8000-ce6/demo/xpac/c%23/io/local/
For XP-8000	-Atom-CE6
Library	CD:\SDK\Special_IO
LIDIALY	ftp://ftp.icpdas.com/pub/cd/xpac-atom-ce6/sdk/special_io/
	VC2005 Demo:
	CD:\Demo\XPAC\VC2005\IO\Local
Demo	ftp://ftp.icpdas.com/pub/cd/xpac-atom-ce6/demo/xpac/vc2005/io/local/
Demo	C# Demo:
	CD:\Demo\XPAC\C#\IO\Local
	ftp://ftp.icpdas.com/pub/cd/xpac-atom-ce6/demo/xpac/c%23/io/local/
For XP-8000	-CE6
Library	CD:\SDK\IO
Library	ftp://ftp.icpdas.com/pub/cd/xp-8000/sdk/io/
	VC2005 Demo:
	CD:\Demo \XPAC \VC2005\IO\Local
Domo	ftp://ftp.icpdas.com/pub/cd/xp-8000/demo/pacsdk/vc/io/local/
Dellio	CD:\Demo \XPAC\C#\IO\Local
	ftp://ftp.icpdas.com/pub/cd/xp-8000/demo/pacsdk/csharp.net/io/local/windows_for
	<u>ms/</u>

For XP-8000-Atom					
Librory	CD:\SDK\IO				
Library	ftp://ftp.icpdas.com/pub/cd/xpac-atom/sdk/io/				
	VC Demo:				
	CD:\Demo \pacsdk \vc\IO\Local				
	ftp://ftp.icpdas.com/pub/cd/xpac-atom/demo/pacsdk/vc/io/local/				
Demo	C# Demo:				
	CD:\Demo \pacsdk\csharp.net\IO\Local\windows_forms				
	ftp://ftp.icpdas.com/pub/cd/xpac-atom/demo/pacsdk/csharp.net/io/local/windows_f				
	<u>orms/</u>				
For ippc-WE	S7				
	CD:\ippc-wes7\sdk\IO				
Library	<pre>ftp://ftp.icpdas.com/pub/cd/ippc-wes7/sdk/io/</pre>				
	VC Demo:				
	CD:\ippc-wes7\demo\pacsdk\vc\io\local\io-8k				
Demo	ftp://ftp.icpdas.com/pub/cd/ippc-wes7/demo/pacsdk/vc/io/local/io-8k/				
io-8k	C# Demo:				
	CD:\ippc-wes7\demo\pacsdk\csharp.net\io\local\io-8k				
	ftp://ftp.icpdas.com/pub/cd/ippc-wes7/demo/pacsdk/csharp.net/io/local/io-8k/				
	VC Demo:				
	CD:\ippc-wes7\demo\pacsdk\vc\io\local\io-9k				
Demo	<pre>ftp://ftp.icpdas.com/pub/cd/ippc-wes7/demo/pacsdk/vc/io/local/io-9k/</pre>				
io-9k	C# Demo:				
	CD:\ippc-wes7\demo\pacsdk\csharp.net\io\local\io-9k				
	ftp://ftp.icpdas.com/pub/cd/ippc-wes7/demo/pacsdk/csharp.net/io/local/io-9k/				

4. API References

API naming table

The following table describes the platforms and in which the product series included and the different part of function name.

Platform	Product included	API prefix characters
Windows CE5 Windows CE6	WP-8000 series XP-8000-CE6 series XP-8000-Atom-CE6 series	"pac_i8017W_"+ function name
Windows CE7	WP-8000 series WP-9000-CE7 series	"pac_i8017W_"+ function name
WES	XP-8000 series XP-8000-Atom series	"pac_i8017W_"+ function name
WES7	XP-8000-WES7 series XP-9000 series	"pac_i8017W_"+ function name
MiniOS7	I-8000 series iPAC-8000 series	"i8017W_" + function name
Linux	LinPAC-8000series LinPAC-9000series	"i8017W_" + function name

The following is an overview of the functions provided in the 8017HW.lib and pac_i8017HW.lib. Detailed information related to individual functions can be found in the following sections.

API for I-8017HW seriesand I-9017 series

Function for MiniOS7	Function for Windows	Description
i8017HW_Init	pac_i8017HW_Init	Used to initialize the module
i8017HW_GetFirmwareVersio	pac_i8017HW_GetFirm	Usedto read the firmware (FPGA) version
n	wareVersion	information
i8017HW_GetLibVersion	pac_i8017HW_GetLibV ersion	Used to read the version and build
		information for the currently installed
		Library
i8017HW_GetLibDate	pac_i8017HW_GetLibD	Used to read the build date information for
	ate	the currently installed Library

i8017HW_GetSingleEndJump	pac_i8017HW_GetSingl	Used to read the status of the input jumper	
er	eEndJumper	(Differential or Single-ended mode)	
i8017HW_ReadAI	pac_i8017HW_ReadAl	Used to read the Analog Input value from a	
		specific channel in float format	
i8017HW_ReadAI_AVG	pac_i8017HW_ReadAI_	Used to read the average Analog input value	
	AVG	from a specific channel in float format	
i8017HW_ReadAIHex	pac_i8017HW_ReadAIH ex	Used to read the Analog Input value from a	
		specific channel in 16-bit hexadecimal	
		format	
i8017HW_ReadAIHex_AVG	pac_i8017HW_ReadAIH ex_AVG	Used to read the average Analog input value	
		from a specific channel in hexadecimal	
		format	
i8017HW_ReadGainOffset_In	pac_i8017HW_ReadGai	Used to read the calibrated voltage Gain	
fo	nOffset_Info	and Offset values	
i8017HW_Read_mA_GainOff	pac_i8017HW_Read_m	Used to read the calibrated currents Gain	
set	A_GainOffset	and Offset values	

API for I-9017-15

Function for MiniOS7	Function for Windows	Description
	pac_i8017HW_Select_SingleEnd	Used to set the Single-ended/ differential
N/A		mode of I-9017-15.

API for I-8017DW

Function for MiniOS7	Function for Windows	Description
i8017HW_Get_D_Sub_Status pac_i8017	noo iqui 71111/ Cot D Sub Status	Used to get connector status
		between D sub and 8017DW.

4.1. pac_i8017HW_Init

This function is used to initialize the module and must be called at least once before using any other function.

Syntax

For MiniOS7
shorti8017HW_Init(
intslot
);
For Windows (CE and WES)
short pac ig017HW/ Init/

```
short pac_i8017HW_Init(
    int slot
);
```

Parameters

slot:

specifies the slot number (0 - 7).

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

int slot; i8017HW_Init(slot);

[C#]

int slot; pac8017HW.Init(slot);
4.2. pac_i8017HW_GetFirmwareVersion

This function is used to read the firmware (FPGA) version information for the module.

Syntax

```
For MiniOS7
shorti8017HW_GetFirmwareVersion(
intslot,
short* firmware
);
```

```
For Windows (CE and WES)
```

```
short pac_i8017HW_GetFirmwareVersion(
    intslot,
    short* firmware
);
```

Parameters

slot

specifies the slot number (0 - 7).

*firmware

[Output]The firmware version information for the I-8017 module.

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

int slot; short firmware; i8017HW_GetFirmwareVersion(slot, &firmware);

[C#]

int slot; Int16 firmware = 0; pac8017HWNet.pac8017HW.FirmwareVersion(slot, ref firmware);

4.3. pac_i8017HW_GetLibVersion

This function is used to read the version and build information for the Library.

Syntax

For MiniOS7

short i8017HW_GetLibVersion(void);

For Windows (CE and WES)

short pac_i8017HW_GetLibVersion(void);

Parameters

None

Return Values

The version number and build information for the Library used by the module. Others: Refer to Appendix A: "Error Code Definitions" for more details.

Examples

[C/C++]

short version; version = i8017HW_GetLibVersion();

[C#]]

Int16 version; version = pac8017HWNet.pac8017HW.LibVersion();

4.4. pac_i8017HW_GetLibDate

This function is used to read the build date information for the Library.

Syntax

```
For MiniOS7
voidi8017HW_GetLibDate(
charlibDate[]
);
For Windows (CE and WES)
void page i8017HW/ GetLibDate(
```

```
void pac_i8017HW_GetLibDate(
    charlibDate[]
);
```

Parameters

libDate[]

A string indicating the build date of the Library.

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

chardate; i8017HW_GetLibDate(date);

[C#]

string date; date= pac8017HWNet.pac8017HW.LibDate();

4.5. pac_i8017HW_GetSingleEndJumper

This function is used to read whether the jumper is set to either Differential or Single-ended mode.

Syntax

```
For MiniOS7
short pac_i8017HW_GetSingleEndJumper(
intiSlot,
short* selectJumper
);
```

```
For Windows (CE and WES)
```

```
short pac_i8017HW_GetSingleEndJumper(
    intiSlot,
    short* selectJumper
);
```

Parameters

iSlot

specifies the slot number (0 - 7).

*selectJumper

[Output]The status of module.

0: Differential Mode

1: Single-ended Mode

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

intslot,jumper; i8017HW_GetSingleEndJumper(slot,&jumper);

[C#]

intslot,jumper;

pac8017HWNet.pac8017HW.SingleEndJumper(slot, ref jumper);

4.6. pac_i8017HW_ReadAI

This function is used to read the Analog Input value in float format from a specific channel of the module.

Syntax

For MiniOS7
about:00171114/ Decide1/
Shorti8017HW_ReadAi(
intiSlot,
intiChannel,
intiGain,
float* fValue
);

```
For Windows (CE and WES)
```

```
short pac_i8017HW_ReadAl(
    intiSlot,
    intiChannel,
    intiGain,
    float* fValue
);
```

Parameters

iSlot

specifies the slot number (0 - 7).

iChannel

Specifies the channel number

iGain

Specifies the input range 0: +/- 10.0V 1: +/- 5.0V 2: +/- 2.5V 3: +/- 1.25V 4: +/- 20mA

*fValue

[Output] the analog input value in float format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Examples

[C++]

int slot, ch, gain; floatfValue; pac_i8017HW_ReadAl(slot, ch, gain,&fValue);

[C#]

int slot, ch, gain; floatfValue; pac8017HWNet.pac8017HW.ReadAI(slot, ch, gain, ref fValue);

4.7. pac_i8017HW_ReadAI_AVG

This function is used to read the average Analog Input value in float format from themodule.

Syntax

```
For MiniOS7
shorti8017HW_ReadAl_AVG(
int slot,
intiChannel,
intiGain,
unsigned short averageCnt,
float* fValue
);
```

For Windows (CE and WES)

```
short pac_i8017HW_ReadAI_AVG(
    int slot,
    intiChannel,
    intiGain,
    unsigned short averageCnt,
    float* fValue
);
```

Parameters

Slot

specifies the slot number (0 - 7).

iChannel

Specifies the channel number

iGain

Specifies the input range

0: +/- 10.0V

1: +/- 5.0V

2: +/- 2.5V

3: +/- 1.25V

4: +/- 20mA

averageCnt

the average count for each sampling routine.

*fValue

[Output] the analog input value in float format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Examples

[C++]

int slot, ch, gain; unsigned shortcnt; floatfValue; pac_i8017HW_ReadAI_AVG(slot, ch, gain,cnt,&fValue);

[C#]

int slot, ch, gain; Uintcnt; floatfValue; pac8017HWNet.pac8017HW.ReadAl_AVG(slot, ch, gain, cnt, ref fValue);

4.8. pac_i8017HW_ReadAlHex

This function is used to read the Analog Input value in 16-bit hexadecimal format.

Syntax

```
For MiniOS7

short i8017HW_ReadAIHex(

intiSlot,

intiChannel,

intiGain,

short* iValue

);
```

For Windows (CE and WES)

```
short pac_i8017HW_ReadAlHex(
    intiSlot,
    intiChannel,
    intiGain,
    short* iValue
);
```

Parameters

iSlot

specifies the slot number (0 - 7).

iChannel

Specifies the channel number

iGain

Specifies the input range

0: +/- 10.0V

1: +/- 5.0V

2: +/- 2.5V

3: +/- 1.25V

4: +/- 20mA

*iValue

[Output] the analog input value in hexadecimal format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Examples

[C++]

int slot, ch, gain; shorthval; pac_i8017HW_ReadAIHex(slot, ch, gain,&hval);

[C#]

int slot, ch, gain; inthval; pac8017HWNet.pac8017HW.ReadAIHex(slot, ch, gain, ref hval);

Note

the I-8017HW/I-8017DW/I-8017HCW/I-9017/I-9017-15/I-9017C-15 modules use a 14-bit AD chip, when user needs to scale the hexadecimal data ,it is convenient to use the pac_i8017HW_ReadHex function to return a 16-bit data.

4.9. pac_i8017HW_ReadAlHex_AVG

This function is used to read the average Analog Input value in 16-bit hexadecimal format.

Syntax

```
For MiniOS7

short i8017HW_ReadAlHex_AVG(

int slot,

intiChannel,

intiGain,

unsigned short averageCnt,

short* iValue

);
```

For Windows (CE and WES)

```
short pac_i8017HW_ReadAIHex_AVG(
    int slot,
    intiChannel,
    intiGain,
    unsigned short averageCnt,
    short* iValue
);
```

Parameters

slot

specifies the slot number (0 - 7).

iChannel

Specifies the channel number

iGain

Specifies the input range

0: +/- 10.0V

1: +/- 5.0V

2: +/- 2.5V

3: +/- 1.25V

4: +/- 20mA

averageCnt

the average count for each sampling routine.

*iValue

[Output] the analog input value in hexadecimal format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Examples

[C++]

int slot, ch, gain; unsigned shortcnt; shorthval; pac_i8017HW_ReadAIHex_AVG(slot, ch, gain,cnt,&hval);

[C#]

int slot, ch, gain; uintcnt; inthval; pac8017HWNet.pac8017HW.ReadAIHex_AVG(slot, ch, gain, cnt, ref hval);

4.10. pac_i8017HW_ReadGainOffset_Info

This function is used to read the calibrated Gain and Offset values for the I-8017 module inserted in a specific slot

Syntax

```
For MiniOS7
short i8017HW_ReadGainOffset_Info(
intiSlot,
intiGain,
unsigned short* iGainValue,
short* iOffsetValue
);
```

For Windows (CE and WES)

```
short pac_i8017HW_ReadGainOffset_Info(
    intiSlot,
    intiGain,
    unsigned short* iGainValue,
    short* iOffsetValue
);
```

Parameters

iSlot

specifies the slot number (0 - 7).

iGain

Specifies the input range

- 0: +/- 10.0V
- 1: +/- 5.0V
- 2: +/- 2.5V
- 3: +/- 1.25V
- 4: +/- 20mA

*iGainValue

[Output]Specifies the calibrated Gain value

*iOffsetValue

[Output]Specifies the calibrated Offset value

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C++]

Intslot,Gain; unsigned short GainValue; shortOffsetValue; short pac_i8017HW_ReadGainOffset_Info(slot,Gain,&GainValue,&OffsetValue);

[C#]

Intslot,Gain; unsigned short GainValue; shortOffsetValue; pac8017HWNet.pac8017HW.GainOffset_Info(slot, Gain, ref GainValue, ref OffsetValue);

4.11. pac_i8017HW_Read_mA_GainOffset

This function is used to read the calibrated Gain and Offset values for the I-8017HCW/I-9017/I-9017C-15 module inserted in a specific slot.

Syntax

```
      For MiniOS7

      short i8017H_Read_mA_GainOffset(

      int slot,

      shortch,

      unsigned short* GainValue,

      short* offsetValue

      );

      For Windows (CE and WES)
```

```
shortpac_i8017H_Read_mA_GainOffset(
    int slot,
    shortch,
    unsigned short* GainValue,
    short* offsetValue
);
```

Parameters

slot

specifies the slot number (0 - 7).

ch

Specifies the channel

Valid range :

I-8017HCW/I-9017 = 0 to 7

I-9017C-15 = 0 to 14

*GainValue

Specifies the calibrated Gain value

*offsetValue

Specifies the calibrated Offset value

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

int slot; shortch; unsigned short GainValue; shortOffsetValue; i8017H_Read_mA_GainOffset(slot,ch,&GainValue, &OffsetValue);

[C#]

Int slot; Int16 ch; UInt16 GainValue; Int16 OffsetValue; pac8017HWNet.pac8017HW.Ch_mAGainOffset(slot,ch,refGainValue,refOffsetValue);

4.12. pac_i8017HW_Select_SingleEnd

This function is used to set the Single-ended/differential mode of I-9017-15.

Syntax

```
For MiniOS7
short i8017HW_Select_SingleEnd (
int slot,
short selection
);
```

```
For Windows (CE and WES)
```

```
shortpac_i8017HW_Select_SingleEnd (
    int slot,
    short selection
);
```

Parameters

slot

specifies the slot number (0 - 7).

selection

The status of module.

0: Differential Mode

1: Single-ended Mode

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

int slot; shortstatus; pac_i8017H_Select_SingleEnd(slot,status);

[C#]

Int slot; Int16 selection; pac8017HWNet.pac8017HW.Select_SingleEnd_Differential (slot,selection);

4.13. pac_i8017HW_Get_D_Sub_Status

This function is used to get connector status between D sub and 8017DW.

Syntax

For MiniOS7

```
short i8017HW_Get_D_Sub_Status(
    intiSlot,
    short* D_Sub_Status
);
```

```
For Windows (CE and WES)
```

```
short pac_i8017HW_Get_D_Sub_Status(
    intiSlot,
    short* D_Sub_Status
);
```

Parameters

slot

specifies the slot number (0 - 7).

*D_Sub_Status

The status of D_Sub.

1 : Open

0 :Close

Return Values

Refer to Appendix A: "Error Code" for more details.

Note

function for I-8017DW module only, in the others 8017 series module,

the value of D Sub Status will always be 1.

Examples

[C/C++]

int slot; short status; pac_i8017HW_Get_D_Sub_Status(slot,status);

[C#]

Int slot; Int16 selection; pac8017HWNet.pac8017HW.D_Sub_Status(slot,selection);

5. Calibration

Each I-8017 module is factory calibrated and thoroughly tested and verified before shipment, so it is usually unnecessary to calibrate the module again unless the input impedance is changed on a calibrated module or the accuracy is lost.

To calibrate the module, in addition to inserting the module into a controller slot, the following items are required:

- A single stable calibration source, such as a 3 1/2 digit power supply (or better) or a battery output.
- A single 4 1/2 digit voltage meter (15-bit resolution or better)
- A Calibration Program. See the Location of the Calibration Demo Programs section below for details.

Tips & Warnings

1. An unstable calibration source will cause calibration errors and will affect the accuracy of the data acquisition.

2. If you wish to perform calibration using \pm 20 mA, select \pm 2.5 V instead as both types use the same Gain and Offset values.

3. The calibration program only uses channel 0 for input of the calibration source.

Select the appropriate usage platform to locate the relevant calibration demo program for the I-8017HW, I-8017DW and I-8017HCW modules.

Platform	Location			
For I-8000				
CD:\Napdos\8000\841x881x\demo\IO_in_Slot\8017h\Calibration <u>ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/8000/841x881x/demo/io_in_slot/8017h/calibration/</u>				
For iPAC-8000				
CD:\Napdos\iPAC ftp://ftp.icpdas.co h/calibration/	8000\Demo\Basic\iP-84x1_iP-88x1\IO_in_Slot\8017h\Calibration om/pub/cd/8000cd/napdos/ipac8000/demo/basic/ip-84x1 ip-88x1/io in slot/8017			

For Windows CE5

(C# demo)

CD:\napdos\wp-8x4x_ce50\Demo\WinPAC\DOTNET\C#.NET\PAC_IO\Local\pac_i8017HW_Dotnet\pa c_i8017HW_calibration

<u>ftp://ftp.icpdas.com/pub/cd/winpac/napdos/wp-8x4x_ce50/demo/winpac/c%23/io/local/pac_i8017</u> <u>hw_dotnet/pac_i8017hw_calibration/</u>

For XP-8000-CE6

CD:\Demo\XPAC\C#\IO\Local\pac_i8017HW_Dotnet\pac_i8017HW_calibration

<u>ftp://ftp.icpdas.com/pub/cd/xp-8000-ce6/demo/xpac/c%23/io/local/pac_i8017hw_dotnet/pac_i801</u> <u>7hw_calibration/</u>

For XP-8000-Atom-CE6

CD:\Demo\XPAC\C#\IO\Local\pac_i8017HW_Dotnet\pac_i8017HW_calibration

<u>ftp://ftp.icpdas.com/pub/cd/xpac-atom-ce6/demo/xpac/c%23/io/local/pac_i8017hw_dotnet/pac_i8</u> 017hw_calibration/

For XP-8000

CD:\Demo\XPAC\csharp.net\IO\Local\windows_forms\pac_i8017HW_Dotnet\pac_i8017HW_calibrat ion

<u>ftp://ftp.icpdas.com/pub/cd/xp-8000/demo/xpac/csharp.net/io/local/windows_forms/pac_i8017hw_dotnet/pac_i8017hw_calibration/</u>

For XP-8000-Atom

CD:\Demo\XPAC\csharp.net\IO\Local\windows_forms\pac_i8017HW_Dotnet\pac_i8017HW_calibrat ion

<u>ftp://ftp.icpdas.com/pub/cd/xpac-atom/demo/xpac/csharp.net/io/local/windows_forms/pac_i8017h</u> <u>w_dotnet/pac_i8017hw_calibration/</u>

5.1. MiniOS7-based Controller

This section contains:

- Calibrating the modules on i-8000 and iPAC-8000 Units
- Verifying the Calibration
- Restoring the Default Calibration Settings

5.1.1. Calibrating on i-8000 and iPAC-8000

- **Step 1.** Repeat Steps 1 to 3 as described in the Quick Start guide.
 - Attach the power supply to the control unit and then connect the control unit to the Host PC.
 - b. Set the Differential/Single-ended input jumper to the Differential position and connect the calibration source to channel 0 using the differential wiring method.
 - c. Connect the meter, as illustrated in the following figure.
 - d. Turn on the control unit.

Step 2. Launch the MiniOS7 Utility on the Host PC. Upload the calibration program to the control unit and execute it.

The MiniOS7 Utility can be downloaded from the web site shown below. Select the appropriate calibration program for your controller.

- MiniOS7 Utility: http://www.icpdas.com/download/minios7.htm
- 8017cal.exe: This is the calibration program for I-8000 units, which is located in the same folder as the demo programs. (See the Location of the Demo Programs section)
- iP_8017cal.exe: This is the calibration program for iP-8000 units, which is located in the same folder as the demo programs. (See the Location of the Demo Programs section)

a. Launch the MiniOS7 Utility on the Host PC, and then choose New Connection from the Connection menu, or press F2.

🃸 MiniC)\$7 Utility Verion 3.1.1 (buil	1 3.1.1.1)
🔯 File	🜔 Connection 두 🐟 Command	. 😴 Configuration
Last in	<u>N</u> ew connection F2	
LOOK IN:	Last Connection Alt+F2	
Name	Disconnect Ctrl+F2	Size Type
7188	Search F12	64KB IMG File
7100	W CD 20070220 1	OTIVE

b. From the drop-down list, select the COM Port for the Host PC that is connected to the control unit, configure the communication parameters to match those indicated below, and then click the OK button.

🚧 Connection	
Connection History	14 1 7 4 - 3 - 3
COM1	
Serial Port	TCP/UDP
Baud Rate: 115200	IP: 192.168.255.1
Data Bit: 8 🛛 👻	Port: 10000
Parily: 0(None)	
Stop Bit 1	
OK Cancel	

c. Select the name of the calibration program and then click the Upload button (or pressF5) to upload the program to the MiniOS7 PAC unit.

d. Once the file has been uploaded, right-click the name of the updated calibration file and choose Run.

.ook in: 🕑 Desktop		 O Ø Ø 		Lock in: Disk A	~		Ð
Name	Size	Туре	Modi No	o Name		Size	Modifie
] hello]hello ⊴ hello.pri	1КВ 8КВ 4КВ	C File Application PRJ File	6/14/ 6/14/ 6/14/	1 hello exe Run Run with parameters Reset MiniO5 F4 Erase Disk		8,308	
	Run Run with j Reset Mini	parameters iOS F4					
	Erase Disk						

The calibration program will be executed on the control unit and 7188xw.exe will be executed on the Host PC to provide a command line interface.

Step 3. Calibrate the module using the following procedure.

a. Select the required input type by typing an option from 0 to 3, and then press Enter.

- Determine two values (points) within the range of the input type selected for the calibration process. For example, after selecting option 0 (-10 V to +10 V), +8 V and -8 V can be used as the two calibration points.
- c. Set the calibration source output to one of the two points (e.g., 8 V in this example)

d. At the "Input 1st voltage" prompt on the console, type the value displayed on the meter and then press Enter.

	* Agilent 34401A SV2 Digit Multimeter B. D. B. D. B. D. J. D. V. D. C.
7	Image: Strate
×	(0)Calibrate Gain_0 –1 V to +10.00V * 🔺 📫 🕬
×	(1)Calibrate Gain_1 - 📝 to + 5.00V *
×	(2)Calibrate Gain_2 - 2.50V to + 2.50V *
×	(3)Calibrate Gain_3 - 1.25V to + 1.25V *
×	(r)Recover default calibration settings *
×	(t)Read calibrated AI value of ChØ *
×	(s)Show calibrated Gain/Offset parameters *
×	(q)quit *
***	***************************************
	Please choose <0~3,r,t,s,q>:0
0ri	ginal Gain_0=34074 Offset_0=74
Ple P	ase input 1st voltage (0.0~+10.0):8.003 pint 1=(0517 Hex)
Ple P	ase input 2nd voltage (0.0~-10.0):-8.003 pint 2=(FB0D Hex)
New Gai	Gain= 36110 ,Offset=-366 ,Save to EEPROM ? (y/n):y nO is calibrated.

- e. Set the calibration source output to the second point (e.g., 8 V in this example).
- f. At the "Input 2nd voltage" prompt on the console, type the value displayed on the meter and then press Enter

8 7188X₩ 1.31 [COM1:115200,N,8,1],FC=0,CTS=1, DIR=D:\	temp <mark>_ 🗆 ×</mark>			
* (0)Calibrate Gain_0 -10.00V to +10.00V	* 🔺			
* <1>Calibrate Gain_1 - 5.00V to + 5.00V	×			
* (2)Calibrate Gain_2 - 2.50V to + 2.50V	×			
* (3)Calibrate Gain_3 - 1.250 to + 1.250	×			
 * (r)Recover default calibration settings 	×			
 * (t)Read calibrated AI value of Ch0 	*			
 * (s)Show calibrated Gain/Offset parameters 	×			
* (q)quit	*			
***************************************	**			
Please choose (0~3,r,t,s,q):0				
Original Gain_0=34074 Offset_0=-74				
Please input 1st voltage <0.0~+10.0>:8.003				
Point 1=(0517 Hex)				
Please input 2nd voltage (0.0~-10.0):-8.003				
Point 2=(FB0D Hex)				
New Gain= 36110 ,Offset=-366 ,Save to EEPROM ? <y n="">:y</y>				
Gain0 is calibrated.				

The new Gain and Offset values for this calibration will then be displayed on the console as:

New Gain= 3xxxx, Offset= nnn, Save to EEPROM? (y/n):

g. Type y and press Enter to accept the values and save the settings to EEPROM.

The calibration for the -10 V to +10 V input range is now complete.

5.1.2. Verifying the Calibration

- Step 1. Set the calibration source to output a voltage to channel 0 on the module. For example, -2 V.
- **Step 2.** In the same calibration program console window, type t (Read the calibrated AI value for channel 0), and then select the input type that was just calibrated (e.g., 0, -10 V to +10 V).
- **Step 3.** Confirm that the values displayed for channel 0 are correct.

5.1.3. Restoring the Default Calibration Settings

When using the default input impedance of 200 k Ω , the calibration program provides a Recover Default Calibration Settings function (r) that can be used to restore the Gain and Offset values to the factory default settings.

🧱 7188X W 1.31 [COM	1:115200,N,8,1],FC=0,CTS=1, DIR=C:\Program	
+/- 10V	Gain =34074 Offset =-74	
+/- 50	Gain =34072 Offset =-76	
+/- 2.5V	Gain =34069 Offset =-84	
+/- 1.25V	Gain =34054 Offset =-79	
+/- 20mA	Gain =34069 Offset =-84	
Gain/Offset para	meters which in using	
+/- 10V	Gain =31383 Offset =-64	
+/- 50	Gain =31359 Offset =-68	
+/- 2.50	Gain =34069 Offset =-84	
+/- 1.250	Gain =34054 Offset =-79	
+/- 20mA	Gain =34069 Offset =-84	
***************	**********	
* (0)Calibrate	Gain_0 -10.00V to +10.00V *	
* (1)Calibrate	Gain_1 - 5.00V to + 5.00V *	
* (2)Calibrate	$Gain_2 - 2.50V to + 2.50V *$	
* (3)Calibrate	Gain_3 - 1.25V to + 1.25V *	
* (r)Recover def	ault calibration settings 🛛 *	
* (t)Read calibr	ated AI value of ChØ 🛛 😽	
* (s)Show calibr	•ated Gain/Offset parameters *	
¥ (q)quit	*	
**************	*********	
Please choose	(0~3,r,t,s,q):r	
Backup default G	Gain/Offset parameters settings for :	100K
+/- 10V	Gair. =34074 Offset =-71	
+/- 50	ain =34072 Offset =-76	
+/- 2.50	Gain =34069 Offset =-84	
+/- 1.250	Gain =34054 Offset =-79	
+/- 20mA	Gain =34007 011set =-84	
Gain/Offset para	neters which in using	
+/- 100	Gain =34074 Offset =-74	
+/- 50	Gain =34072 Offset =-76	
+/- 2.5V	Gain =34069 Offset ==24	
+/- 1.25V	Gain =34054 Viiset =-79	-

5.2. Windows-based Controllers

Each module is factory calibrated and well verified before shipment, so it is usually unnecessary to calibrate the module again, unless the input impedance is changed on a calibrated module, or the accuracy is lost.

To calibrate it, in addition to inserting the module into a controller slot, the following items are required:

- A single stable calibration source, such as a 3 1/2 digit power supplier (or better), or a battery output.
- A single 4 1/2 digit voltage meter (15-bit resolution or better)
- A Calibration Program. See Location of the Demo Programs section for the contained in the demo programs folder.

Tips & Warnings

1. An unstable calibration source will cause calibration errors and affect the accuracy of the data acquisition.

2. If you wish to perform calibration using ± 20 mA, select ± 2.5 V instead as both types use the same gain and offset values.

3. The calibration program uses channel 0 to accept the calibration source only.

This section contains:

- Calibrating the module on WinCE and WES PAC Units
- Verifying the Calibration
- Restoring the Default Calibration Settings
5.2.1. Calibrating on WinCE and WES PAC Units

- **Step 1.** Refer to the Jumper Settings section. Ensure that the Differential/Single-ended input selection jumper is in the Differential position.
- **Step 2.** Connect the calibration source to channel 0 of the module using the differential wiring method, as illustrated.
- **Step 3.** Insert the module into a vacant slot on the controller and power on the controller.
- **Step 4.** Launch the pac_i8017W_Calibration.exe executable file on the controller to display the Calibration dialog box.

(See the Location of the Demo Programs section for details of where to find the c# demo programs for the module)

Tips & Warnings

Only channel 0 can be used to perform calibration.

Step 5. In the upper section of the Calibration dialog box, select the I-8014W slot number and the input range from the respective drop-down lists.

3017 Calibration Demo V1.0.0.3
Select I-8014W slot index Slot 1 💌 Select Input Range (+/- 10.0 V 💌
using Gain Value 32917 using Offset Value -28 default Gain Value 32917 default Offset Value -28
Information Step 1: Set Point 1 step 2: Set Point 2 step 3: apply settings
Step 1: Send first stable Voltage to Channel 0 for Calibration
Input first Voltage value(float) 8.0 (Unit : Voltage)
Set as Calibration Point 1
Readback Hex value 0x661C
Readback Float value 7,977295

- Step 6. Determine two values (points) within the range of the input type selected for the calibration process. For example, after selecting -10 V to +10 V as the input range, +8 V and -8 V can be used as the two calibration points:
- **Step 7.** Set the calibration source output to one of the two points (e.g., 8 V)

Step 8. Click the Step 1: Set Point 1 tab and type the value displayed on the meter (e.g., 8.0) in the Input First Voltage Value text box, and then click the Set as Calibration Point 1 button.

8017 Calibration Demo V1.0.0.3	
Select I-8014W slot Index Slot 1	Select Input Range +/- 10.0 V 💌
using Gain Value 32917	using Offset Value -28
default Gain Value 32917	default Offset Value -28
Information Step 1: Set Point 1 step 2	2: Set Point 2 step 3: apply settings
Step 1: Send first stable Voltage to 0	Channel 0 for Calibration
Input first Voltage value(float)	8.0 (Unit : Voltage)
Set as Calibration Point 1	
Readback Hex value 0x661C	
Readback Float value 7.97729	5

Step 9. Set the calibration source output to the second value (e.g., - 8 V in this example)

Step 10. Step 10. Click the Step 2: Set Point 2 tab and type the value displayed on the meter

(e.g., - 8.0) in the Input Second Voltage Value text box, and then click the Set as Calibration Point 2 button.

8017 Calibration Demo V1.0.0.3 📃 🗖 🗵
Select I-8014W slot Index Slot 1 💌 Select Input Range +/- 10.0 V 💌
using Gain Value 32917 using Offset Value -28
default Gain Value 32917 default Offset Value -28
Information Step 1: Set Point step 2: Set Point 2 step 3: apply settings
Step 2: Send second stable Voltage to Channel 0 for Calibration
Input second Voltage value(float) -8.0 (Unit : Voltage)
Set as Calibration Point 2
Readback Hex value 9A28
Readback Float value -7.957458

Step 11. Click the Step 3: Apply Settings tab, and check that the calibration parameters are correct.Click the Save New Calibration Settings button to save the calibration settings.

The calibration for the -10 V - +10 V input range is now complete.

3017 Calibration Dem	v1.0.0.3		_ 🗆 ×
Select I-8014W slot Index	Slot 1 💌	Select Input Range	+/- 10.0 V 💌
using Gain Value	32993	using Offset Value	-1
default Gain Value	32917	default Offset Value	-28
Information Step 1: Set	Point 1 step	2: Set Point 2 step 3:	apply settings
Step 3: Save new cali	bration setting	s or recover default se	ttings for module
New Calibration parame	ter:		
Gain 329	93		
Offset 1			
Save new Calibratio	on settings	Recover default c	alibration setting

5.2.2. Verifying the Calibration

- **Step 1.** Set the calibration source to output a voltage to channel 0 on the I-8014W module. For example, -2 V.
- **Step 2.** In the Calibration dialog box, click the Step 1: Set Point 1 tab and confirm that the AI Readback Float value is as illustrated in the image below:

8	017 Calibration Demo V1.0.0.3
S	Select I-8014W slot Index Slot 1 💌 Select Input Range +/- 10.0 V 💌
	using Gain Value 32917 using Offset Value -28 default Gain Value 32917 default Offset Value -28
	Information Step 1: Set Point 1 step 2: Set Point 2 step 3: apply settings
	Step 1: Send first stable Voltage to Channel 0 for Calibration
	Input first Voltage value(float) -2,0 (Unit : Voltage)
	Set as Calibration Point 1
	Readback Hex value 0xE5B4
	Readback Float value -2.054443

5.2.3. Restoring the Default Calibration Settings

When using the default input impedance of 200 k Ω , the calibration program includes a Recover Default Calibration Settings function that can be used to restore the Gain and Offset values to the factory default values:

Click the Step3: Apply Settings tab, and then click the Recover Default Calibration Settings button. The Gain and Offset settings will be restored to the factory default values and will be displayed in the upper section of the Calibration dialog box.

For an input impedance of 200 kΩ (the default setting), the calibration program provides Recover default calibration settings function to restore the Gain and Offset values to factory default:

B017 Calibration Demo V1.0.0.3	
Select I-8014W slot Index Slot 1 💌 Select Input Range +/- 10.0 V 💌	
using Gain Value 32993 using Offset Value -1 default Gain Value 32917 default Offset Value -28)
Information Step 1: Set Point 1 step 2: Set Point 2 step 3: apply settings	
Step 3: Save new calibration settings or recover default settings for module	
New Calibration parameter:	
Gain 32993	
Offset -1	
Save new Calibration settings Recover default calibration setting	
8017 Calibration Pears V1.0.0.3	×
Select I-8014W slot Index Slot 1 Select Input Range +/- 10.0 V	
using Gain Value 32917 using Offset Value -28	
default Gain Value 32917 default Offset Value -28	Ŀ
Information Step 1: Set Point 1 step 2: Set Point 2 step 3: apply settings	
Step 3: Save new calibration settings or recover default settings for module	
New Calibration parameter:	
Gain 32993	
Offset -1	
Save new Calibration settings Recover default calibration setting	-

6. Troubleshooting

This chapter discusses how to solve some common problems you may encounter.

This chapter contains:

- How to verify the AI function on a WinCE or WES PAC Service/Request Requirements
- What to do when the data read from the module seems unstable

6.1. Verifying Analog Input functionality on a WinCE or WES PAC device

If the data read from the module is inconsistent with the input signal, and you would like to confirm the input function, the pac_i8017W_Utility.exe tool may be helpful. The utility can only be used with modules designed for controllers using the WinCE and WES platforms and is located in the I-8017W C# demo program folder for the controller. (See the Location of the Demo Programs section for more details)

Step 1. Connect a stable signal to the module.

- a. Connect your input signal according to whether differential or single-ended Jumper settings are used. (See the Jumper Settings section for more details)
- b. The input range can be from -10 V to +10 V.
- c. Insert the module into a slot in a Windows platform controller and then power on the controller.

Tips & Warnings

1. A battery output should provide a stable enough signal.

- 2. A 125 $\boldsymbol{\Omega}$ resistor is required when measuring current input.
- 3. If the result is not as stable as the input signal when measuring the voltage using the differential input type, it is recommended that an additional wire is connected between the Vn- and the AGND (analog ground) pins to enhance the accuracy. Note that this method has no benefit in enhancing accuracy when measuring current input.

Step 2. Launch the pac_i8017W_Utility.exe

- Step 3. Read the information from the module
 - a. Select the slot that the module is connected to from the slot index drop-down list.
 - b. Click the Basic Information tab.

The Basic Information page includes:

- The version information for the FPGA firmware
- The current position of the Differential/Single-ended jumper
- The Gain and Offset values for each input type

orm1					
I-8017HW Slo	ot Index	¢	Slot	3	•
Basic Inform	ation [AI Test			
Library Ver	sion 30	001		Refre	sh
Firmware	Firmware 18			Sav	e
Single-Ende	ed/ Diffi	erential	Diffe	erential	
+/- 10V	Gain	33636		Offset	-90
+/- 5V	Gain	33632		Offset	-88
+/- 2.5V	Gain	33639		Offset	-85
+/- 1.25V	Gain	33628		Offset	-75
+/- 20mA	Gain	33639		Offset	-85

Click the Save button to save all the information to the Slot1_8017W_Info.txt file. This information is useful for troubleshooting when requesting service.

Verifying the Gain and Offset Values

In a normal situation, the Gain value should be around 33000 (33000 to 34000). If the value is greatly different from 33000, it means that the value is incorrect. To correct this situation, try the following:

- a. Press Refresh to retrieve the Gain values again and confirm whether or not they are correct.
- b. Relocate the module to a different slot, and then repeat Steps 2 and 3 to confirm whether or not the Gain values are correct.

Test the input function.

- a. Click the AI test tab, and then select the required input range from the Gain drop-down list.
- b. Enter the required sample count, and choose the data format from the Format drop-down list.
- c. Click the Start button.

Form	L								_ 🗆 ×
I-8014	4W slot Ind	ex Slo	ot 1	▼					
Basic	: Informati	on AI Tes	t						
Gain	+/- 10.0 \	/ 🔽 Co	unt 100	00	For	mat Floa	it 💌		
	First Data	Min Data	Max Data	Delta		First Data	Min Data	Max Data	Delta
СО	02.6645	02.6636	02.6651	00.0015	C8				
C1	02.6642	02.6636	02.6651	00.0015	C9				
C2	02.6642	02.6639	02.6648	00.0009	C10				
Сз	02.6642	02.6639	02.6651	00.0012	C11				
C4	02.6642	02.6636	02.6651	00.0015	C12				
C5	02.6642	02.6639	02.6648	00.0009	C13				
C6	02.6642	02.6636	02.6651	00.0015	C14				
C7	02.6642	02.6639	02.6651	00.0012	C15				
	Start		Time Ti	icks 39			Save		

After the sampling process is completed, the data will be displayed in the respective columns for each channel.

d. If necessary, click the Save button to save the data and the sampling time to the SampleData_Hex_mm_dd_hh_mim_sec.csv file.

6.2. Service Request Requirements

If you are using a stable signal source to output a signal to the module, such as a battery, and are receiving incorrect or unstable data, prepare the following three items and e-mail them to <u>service@icpdas.com</u>

- An image of the physical wiring
- The file saved from the Basic Information tab (See step 3 in Section 6.1 above)
- The file saved from the AI Test tab (See step 4 in Section 6.1 above)

6.3. What to do when the data read from the module seems unstable

If the voltage can be measured correctly when testing using a battery, but not when using the real signal source, the error may be caused by any or all of the following factors:

- A noise-corrupted signal source
- Instability in the signal source
- A floating signal source that is not referenced to a system ground(earth or building ground)

Because of the nature of the high-speed data acquisition function on the module, any noise coupled to a signal, or any change in voltage on an unstable source, is also captured. In this situation, signal filtering or isolation should be considered in order to enhance the quality of the signal.

It is recommended that the V- pin is connected to the AGND (system ground) pin when measuring differential signals, as shown in the figure below.

Appendix A. Error Code

Error Code	Definition	Description
0	NoError	This indicates that there have been no errors
-1	ID_ERROR	There is a problem with the module ID
-2	SLOT_ERROR	There is a Slot index error (0 - 7)
-3	CHANNEL_ERROR	There is a Channel index error (0 - 15)
-4	GAIN_ERROR	There is a Gain error (0 - 4)
-6	NOT_SUPPORT_ERROR	The function is not support the Firmware
-7	NOT_Calibration	The module is not calibrated

Appendix B. Read AI Function Performance

Platform	ReadAI (Polling)	ReadAlHex (Polling)
WES	90~95 KHz	90~95 KHz
CE6	90~95 KHz	90~95 KHz
CE5	90 KHz	90~95 KHz
IP-8000	7.6KHz	36KHz
I-8000	2KHz	12KHz

Using a single channel

Using multiple channels

Platform	ReadAI (Polling)	ReadAIHex (Polling)
WES	35 KHz	35 KHz
CE6	35 KHz	35 KHz
CE5	35 KHz	35 KHz
IP-8000	6.6KHz	22KHz
I-8000	2KHz	9KHz

Notes

- There is no need to switch the MUX when using a single channel as it provides the best performance. However, when using multiple channels the MUX needs to be switched and you should be aware that the performance will be affected by switching the MUX.
- 2. The MiniOS7 system is not designed for mathematical operations, so it is more suitable for non-continuous data sampling in high speed applications.
- 3. Large amounts of non-continuous data samples can be saved on the other memory devices, for example MicroSD cards or NAND flash memory.
- 4. A Backplane Timer Interrupt can be used for the CE5 and CE6 platforms when performing continuous data sampling.
- 5. The Timer on the WES platform can be affected by Ethernet communication or when using a mouse. If greater accuracy is required for the sample frequency (less than 50 ms), it is recommended that either the CE5 or the CE6 platform is used.

Appendix C. Revision History

This chapter provides revision history information to this document.

The table below shows the revision history.

Revision	Date	Description		
1.0.0	January 2018	Initial issue		
2.0.0	January 2018	Added content for the I-8017DW and I-8017HCW modules		
		Added calibration instructions for modules based on the		
		Windows platform		
		Added performance information for all platforms		
3.0.0	July 2018	• Added content for the I-9017, I-9017-15, I-9017C-15 modules		
		Modified library , demo path		
		Added WP-9000 , ippc-wes7 library , demo path		
		Modified API functions		
3.0.1	November 2018	Modified the specification of the Single Channel Polling Mode		