

PISO-CAN100U-D

PISO-CAN100U-T

The PISO-CAN100U can represent an economic solution of an active CAN board with universal PCI bus. It has one CAN bus communication port with 5-pin screw terminal connector or 9-pin male D-sub connector, and has the ability to cover a wide range of CAN applications. Besides, PISO-CAN100U uses the new CAN controller Phillips SJA1000T and transceiver 82C250, which provide bus arbitration, error detection with auto correction and re-transmission function. It can be installed in both 3.3 V and 5 V PCI slot and supported truly "Plug & play".

- Compatible with CAN 2.0 parts A and B
- Fully compatible with ISO 11898-2 standard
- Support CAN bard from 10 kbps ~ 1 Mbps
- 2500 Vrms photo couple isolation on the CAN bus
- Universal PCI supports both 5 V and 3.3 V PCI bus
- Built-in jumper to select 120Ω terminal resister
- 3 kV galvanic isolation
- one CAN channel
- Direct memory mapping to the CAN controller
- Provide VB6.0, VC++6.0, Delphi, BCB6.0 demos

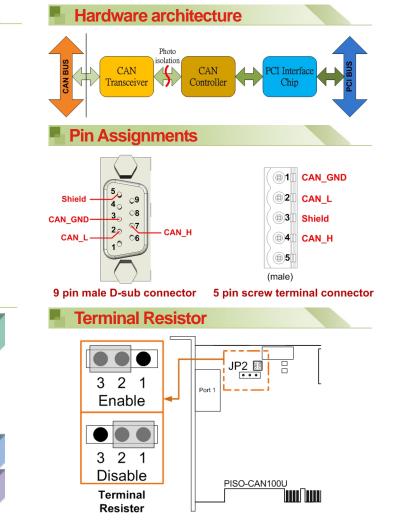
User Program

CANopen/

DeviceNet library

CAN library (User Mode)

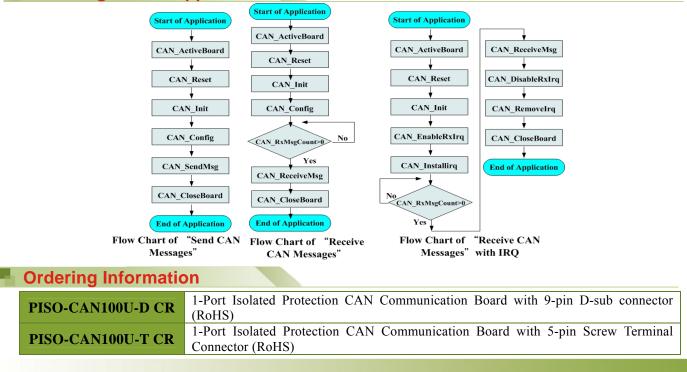
CAN library (Kernel Mode)


- LabView/DASYLab driver
- Driver support Windows 2K/XP/7

DasyLab

/LabView

Driver


Hardware Specifications

Model Name	PISO-CAN100U-D	PISO-CAN100U-T
Bus Interface		
Туре	Universal PCI, 3.3 V and 5 V, 33 MHz, 32-bit, plug and play	
CAN Interface		
Controller	NXP SJA1000T with 16 MHz clock	
Transceiver	NXP 82C250	
Channel number	1	
Connector	9-pin male D-Sub	5-pin screwed terminal block
Baud Rate (bps)	10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow user-defined baud rate)	
Terminator Resistor	Jumper for 120 Ω terminator resistor	
Power		
Power Consumption	225 mA @ 5 V	
Software		
Driver	Windows 2K/XP/7, Linux 2.6.37, LabView, DASYLab	
Library	VB 6.0, VC++ 6.0, BCB 6.0, Delphi 4.0, C#.Net, VB.Net	
Mechanism		
Dimensions	126mm x 22mm x 85mm (W x L x H)	
Environment		
Operating Temp.	$0 \sim 60 \ ^{\circ}\mathrm{C}$	
Storage Temp.	-20 ~ 70 °C	
Humidity	5 ~ 85% RH, non-condensing	

Utility

Date Date <th< th=""><th> Can be a CAN system monitor tool with CAN cards Can test CAN cards Send/Receive/Record CAN messages Provide cyclic transmission function Record the CAN messages with filter ID with time stamp </th></th<>	 Can be a CAN system monitor tool with CAN cards Can test CAN cards Send/Receive/Record CAN messages Provide cyclic transmission function Record the CAN messages with filter ID with time stamp
---	---

Flow Diagram for Applications

