
NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 1

NAPOPC_CE5 DA Server

User's Manual
[Version 2.30]

OPC® , the OPC-Logo and OPC™ Foundation are trademarks of the OPC Foundation.

(www.opcfoundation.org)

Microsoft®, Microsoft .NET™, VisualStudio.NET™ and Microsoft Windows™ are trademarks of the

Microsoft Corporation (www.microsoft.com)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 2

Warranty

All products manufactured by ICP DAS Inc. are warranted against defective

materials for a period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS Inc. assumes no liability for damages consequent to the use of this

product. ICP DAS Inc. reserves the right to change this manual at any time without

notice. The information furnished by ICP DAS Inc. is believed to be accurate and

reliable. However, no responsibility is assumed by ICP DAS Inc. for its use, or for

any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright 2003-2011 by ICP DAS Inc., LTD. All rights reserved worldwide.

Trademark

The names used for identification only maybe registered trademarks of their

respective companies.

License

The user can use, modify and backup this software on a single machine. The

user may not reproduce, transfer or distribute this software, or any copy, in whole or

in part.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 3

Table of Contents

1 NAPOPC_CE5 DA SERVER .. 4

1.1 INSTALL NAPOPC_CE5 DA SERVER ... 5
1.2 FUNCTION OVERVIEW ... 6

1.2.1 Search Modules .. 6
1.2.2 Monitoring Devices... 11
1.2.3 Adding a New Device .. 12

1.2.3.1 Adding a New I-8K/I-87K Embedded Module ... 12
1.2.3.2 Adding a New XW I/O Embedded Module .. 14
1.2.3.3 Adding a New Remote I/O Module .. 16
1.2.3.4 Adding a New Internal Device .. 18
1.2.3.5 Adding a New FRnet Device .. 20
1.2.3.6 Adding a New Modbus RTU Controller ... 21
1.2.3.7 Adding a New Modbus ASCII Controller ... 24
1.2.3.8 Adding a New Modbus TCP Controller .. 26

1.2.4 Adding a New Group .. 28
1.2.5 Adding a New Tag .. 29

1.2.5.1 Adding New Tags For I-7K/8K/87K/ZigBee/FRnet/XW Module .. 29
1.2.5.2 Adding a New Tag For Internal Device .. 31
1.2.5.3 Adding a New Tag For Modbus Device .. 32
1.2.5.4 Scaling Settings ... 34

1.2.6 Adding Multi Tags for Modbus Device ... 35
1.2.7 Read/Write the Tags.. 36
1.2.8 Editing A Device/Group/Tag properties ... 37
1.2.9 Deleting A Device/Group/Tag .. 38
1.2.10 Generating Tags ... 40
1.2.11 Services Setup ... 40
1.2.12 Rule Script Editor ... 41
1.2.13 File .. 42
1.2.14 About ... 44
1.2.15 Minimize NAPOPC_CE5 .. 44

2 QUICK START .. 45

3 REMOTE ACCESSING .. 46

3.1 SYSTEM REQUIREMENT ... 47
3.2 CONFIGURING DCOM ... 48

3.2.1 Configuring On the Server Site (WinPAC) ... 49
3.2.2 Configuring On the Client Site (PC) ... 50
3.2.3 Configuring On the Client Site (XPAC) .. 59
3.2.4 Configuring On the Client Site (WinPAC) .. 68

4 THE APPLICATION OF NAPOPC_CE5 ... 72

4.1 NAPOPC_CE5 WITH OPC CLIENT ... 72
4.2 NAPOPC_CE5 WITH MODBUS RTU/TCP CLIENT.. 78

4.2.1 Supported Modbus Commands ... 78
4.3 NAPOPC_CE5 WITH NAPOPC_ST/NAPOPC_XPE ... 79
4.4 NAPOPC_CE5 WITH USER APPLICATION ... 79

4.4.1 Quicker API for eVC++ Developer .. 79
4.4.1.1 System Function .. 81
4.4.1.2 QuickerIO Function .. 84
4.4.1.3 Modbus Function .. 96
4.4.1.4 UserShare Function ... 104

4.4.2 Quicker API for VB.NET/VC#.NET Developer .. 113
4.5 NAPOPC_CE5 WITH RULE SCRIPT ... 114

4.5.1 Rule Script Syntax ... 114

APPENDIX A – ERROR LIST AND DESCRIPTION ... 116

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 4

1 NAPOPC_CE5 DA Server

What is NAPOPC_CE5 DA Server? NAPOPC_CE5 DA Server is an integrated
omnibus software package which combines OPC, Modbus TCP, Modbus RTU
services, and Scankernel together. The particular design, “Rule Script”, lets user can
quickly establish a DCS control system with logic control, multi-communication
services.

For UI design, NAPOPC_CE5 uses an explorer-style user interface to display a
hierarchical tree of modules and groups with their associated tags. A group can be
defined as a subdirectory containing one or more tags. A module may have many
subgroups of tags. All tags belong to their module when they are scanned to perform
I/O. (The “OPC” stands for “OLE for Process Control” and the “DA” stands for “Data
Access”.)

For software use, NAPOPC_CE5 creates a set-up procedure requiring at most
three steps for different kinds of users. This kind of procedure simplifies the
designing process for the programmer, and ensures the stability and efficiency of
control system.

NAPOPC_CE5 not only can map the physical I/O to a specific Modbus address
automatically, but also allows users to define their own variables into it. Therefore
users can develop their own application program with eVC++, VB.NET, and
VC#.NET programming language via Modbus RTU and Modbus TCP protocol to
share their specific data with Modbus client. Moreover, users can operate the
NAPOPC_CE5 and NAPOPC_ST/NAPOPC_XPE in coordination to create a
fantastic solution integrating SCADA software with on-line data.

Fig 1-1

Rule Script

Scan Kernel

OPC MBTCP MBRTU

User

APs

User

APs

MBRTU Client MBTCP Client NAPOPC

ICP DAS

I-7K/I-8K/I-87K

Modules

ICP DAS

PAC

ICP DAS

M-7K

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 5

The main program of NAPOPC_CE5 is "NAPOPCSvr_CE5.exe". It automatically
loads dynamic libraries under \System_Disk\Tools\ NAPOPC_CE5 folder and calls
functions in these libraries.

1.1 Install NAPOPC_CE5 DA Server
You have to execute ”NAPOPC_CE5Boot.exe” in the \System_Disk\Tools\

NAPOPC_CE5 of WinPAC-8000/5000 when you use NAPOPC_CE5 first time, after
that, ”NAPOPC_CE5Boot.exe” will register NAPOPC_CE5 automatically. Moreover,
if you want to execute the " NAPOPCSvr_CE5.exe " automatically while WinPAC-
8000/5000 boots up, please refer to the “Auto Execution” function at “3.5 WinPAC
Utility” of winpac_8x4x_user_manual_v1.9.0.pdf and add path of ”
NAPOPC_CE5Boot.exe” into “Auto Execution”.

NOTE: After above steps, please use "Save and Reboot" function at WinPAC
Utility to save registry exactlly.

Fig 1.1-1

After that, you execute the main program " NAPOPCSvr_CE5.exe " which

would load dynamic libraries under \System_Disk\Tools\ NAPOPC_CE5 folder by

itself to start NAPOPC_CE5.

If the files under “\System_Disk\Tools\NAPOPC_CE5” loss or crash, please

copy the files under “/napdos/wp-8x4x_ce50/system_disk/tools/NAPOPC_CE5/” in

the CD to “\System_Disk\Tools\NAPOPC_CE5” by yourself.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 6

1.2 Function Overview

1.2.1 Search Modules

The "Search Modules…" function lets you configure NAPOPC_CE5
automatically. It searches the RS-485 network and embedded modules to find
modules and then generates tags automatically. This version of NAPOPC_CE5 not
only generates AI/AO, DI/DO, Latched DI and Counter tags but also maps each tag
to a unique modbus address.

Step 1: Click on the "Add/ Search Modules…" menu item or the icon to search for
modules.

Fig 1.2.1-1

Step 2: The "Search Modules" window pops up.

Fig 1.2.1-2

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 7

Step 3: If you want to search the I-8K I/O modules or XW-board plugged in the
WinPAC-8000/5000, you have to check the “Local Search” field. “COM 0” is for
searching I-87K I/O modules or XW-board plugged in the WinPAC-8000/5000.

Fig 1.2.1-3

Step 4: If you want to search the I-7K/I-87K remote I/O modules via RS-232, you
have to choice “COM 1” and uncheck the “Local Search”.

Fig 1.2.1-4

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 8

Step 5: If you want to search the I-7K/I-87K remote I/O modules via RS-485 and ET-
7000 modules via Ethernet, you have to choice “COM 2” and “ET-7000”, and
uncheck the “Local Search”.

Fig 1.2.1-5

COM :

Specifies which "COM" port number to search. The default value is 0
and the valid range is from 0 to 255. Please verify the "COM" port number that
the RS-485 network is connected to.

Modules COM 0 COM 1 COM 2 COM 3 COM 4

Local I-87K/XW-board Yes - - - -

Remote I-7K/I-87K via RS-232 - Yes - - -

Remote I-7K/I-87K via RS-485 - - Yes - -

Remote I-7K/I-87K via
RS-232/485

- - - Yes -

Remote I-7K/I-87K via RS-232 - - - - Yes

ET-7000:

If this field is checked, NAPOPC can search not only the modules
communicating via COM port but also ET-7000 modules via Ethernet
automatically.

Clear Modules:

Modules can be added many times. If this field is checked, it removes
all modules from the list window before searching. Checking this box prevents
adding a duplicate module. The default setting is "not checked".

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 9

Local Search:
If this field is checked, it searches the I-8K modules or XW-board

plugged in the WinPAC-8000/5000 first.

Baud Rate Searching:
Specifies which "Baud Rate" will be looking for. The default setting is

"9600".
Naturally, if multiple baud rates are checked, the search will be longer.

NAPOPC_CE5 has to close and then reopen the COM ports to communicate
with modules when searching for multiple baud rates. This also reduces
communication performance. Thus, using the same baud rate and COM port
number for every module is highly recommended.

Select All:

Sets all the "Baud Rate" fields to be checked. Please refer to the above
"Baud Rate Searching" section.

Clear All:

Sets all the "Baud Rate" fields to be unchecked (nothing to search).
Please refer to the above "Baud Rate Searching" section.

Address/Start:

Specifies the starting address. The default value is 0 and the valid
range is from 0 to 255. It won't search for an address below these settings.

Address/End:

Specifies the ending address. The default value is 255 and the valid
range is from 0 to 255. It won't search for an address greater than these
settings.

Checksum/Disabled:

If this field is checked, modules are searched with no checksum. If both
the "Disabled" and "Enabled" fields were unchecked, the search would be
undefined.

Checksum/Enabled:

If this field is checked, it searches modules with checksum. If both the
"Disabled" and "Enabled" fields were unchecked, again, the search would be
undefined.

Timeout:

Specifies the timeout value of communication to each module. The
default value is 200 (equal to 0.2 Seconds), measured in millisecond(s) [0.001
Second(s)]. After a module has been found, this timeout value will also be
recorded for further use.

Users can reduce this value to shorten the search time. Be careful. A
shorter search time may cause communication failure.

Status:

It shows the searching status (includes: progress in %, Address in
"A:??", Baud-Rate in "B:????", Checksum in "S:?" and Error-Code in "EC:??").

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 10

The timeout error code is 15. In most cases, it indicates no module has
responded to the current command.

Search:

After setting the above options, click this button to search. The window
will be closed automatically when completed.

Stop:

During the search, users can click the button to stop. The window will
stay on the screen after the search is cancelled.

Exit:
 Users can click the button to close the window.

Step 6: After the search, the discovered modules will be listed on the Device-

Window (left side). Users can also see the tags on the Tag-Window (right
side) generated by the "Search Modules…" function automatically.

Fig 1.2.1-6

The "Search Modules…" function generates "Digital Input", "Digital Output"

"Bit Input" or "Bit Output" tags.

The "Digital Input" and "Digital Output" tags use one communication to read

the status of all channels, while the "Bit Input" and "Bit Output" tags use one
communication to read only one-channel status. The "Digital Input" and "Digital
Output" tags have better performance than the "Bit Input" and "Bit Output" tags.
Using the "Digital Input" and "Digital Output" tags to access modules is highly
recommended.

Device-Window
Tag-Window

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 11

Fig 1.2.1-7

1.2.2 Monitoring Devices

Use the "Monitor" function to see values of tags by checking the "View/
Monitor" menu item. Uncheck the item to stop monitoring.

Step 1: Click the "View/ Monitor" menu item to enable monitor.

Fig 1.2.2-1

Step 2: Select the "AIs" group in the Device-Window (left side) to monitor its own

Analog -Input tags.

Groups

Tags

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 12

Fig 1.2.2-2

Step 3: Select the "8064" module on the Device-Window to monitor its own Digital-

Output tags.

Fig 1.2.2-3

1.2.3 Adding a New Device
NAPOPC_CE5 provides three kinds of device, “DCON Device”, “FRnet

Device”, and “Modbus Device” to be added. The “DCON Device” includes “I-8K/87K
Embedded Modules”, “Remote I/O Modules”, and “Internal Device”. The “Internal
Device” could be the intermediary container between several user application
programs or the intermediary device designing “Rule Script”. The “FRnet Device”
supports ICP DAS FRnet modules. The “Modbus Device” supports “Modbus RTU”,
“Modbus ASCII”, and “Modbus TCP” protocol. NAPOPC_CE5 provides multi-thread
communication via COM port and Ethernet. The maximum number of Modbus TCP
master communication thread is limited to 32 by default.

1.2.3.1 Adding a New I-8K/I-87K Embedded Module

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 13

Fig 1.2.3.1-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "DCON" radio button.

Step 4: Click the "I-8K/I-87K Embedded Modules" radio button.

Fig 1.2.3.1-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within

a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

Module:
User can click on the ComboBox to select a Module ID.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 14

Timeout:

Specifies timeout (Response time) value for this module. A smaller
timeout value may cause communication failure and a greater timeout value
may reduce the performance of the client program.

Slot:

The WinPAC-8000 has 4 or 8 slots to plug in. This “slot” field indicates
the slot number that the I/O module used. The valid range is from 0 to 7.

Range:
It is for I-8017 and I-8024 module settings. Please refer to module

manual to choose correct range.

Simulate I/O:
The “Simulate I/O” checkbox switches to a simulator of reading I/O.

Since the simulator does not open the TCP/IP or COM port, it is an easy way
to work with the server, to configure tags or to connect clients without
requiring any hardware.

Pending Time:

 Minimum interval time between two access. To activate this function,
NAPOPC_CE5 can work under optimized communication performance. If this
module only needs to be accessed 1 time per 5 seconds. You can set
pending time as 5000 ms. NAPOPC_CE5 will automatically spread time
resource to other modules which are connected with each other.

Step 5: Click on the "OK" button to add this new module.

1.2.3.2 Adding a New XW I/O Embedded Module

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

Fig 1.2.3.2-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "DCON" radio button.

Step 4: Click the "XW I/O Embedded Modules" radio button.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 15

Fig 1.2.3.2-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within

a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

Module:
User can click on the ComboBox to select a Module ID.

Timeout:
Specifies timeout (Response time) value for this module. A smaller

timeout value may cause communication failure and a greater timeout value
may reduce the performance of the client program.

Simulate I/O:

The “Simulate I/O” checkbox switches to a simulator of reading I/O.
Since the simulator does not open the TCP/IP or COM port, it is an easy way
to work with the server, to configure tags or to connect clients without
requiring any hardware.

Pending Time:

 Minimum interval time between two access. To activate this function,
NAPOPC_CE5 can work under optimized communication performance. If this
module only needs to be accessed 1 time per 5 seconds. You can set

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 16

pending time as 5000 ms. NAPOPC_CE5 will automatically spread time
resource to other modules which are connected with each other.

Step 5: Click on the "OK" button to add this new module.

1.2.3.3 Adding a New Remote I/O Module

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

Fig 1.2.3.3-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "DCON" radio button.

Step 4: Click the "Remote I/O Modules" radio button.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 17

Fig 1.2.3.3-2

Device Name:

Names with spaces or punctuation such as “|!.,” cannot be used within
a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

Module:
User can click on the ComboBox to select a Module ID.

Address:
Specifies a Module Address for this module. The default value is 0 and

the valid range is between 0 to 255. This field is disabled for the 8000 sub-
devices. It will use the 8000 main-device’s address.

Slot:

The 8000 main-device has 4 or 8 slots for the 8000 sub-device to plug
in. This “slot” field indicates the slot number that the 8000 sub-device is using.
The valid range is from 0 to 7.This field is disabled for 8000 main-device and
7000 series modules.

Timeout:

Specifies timeout (Response time) value for this module. A smaller
timeout value may cause communication failure and a greater timeout value
may reduce the performance of the client program. This field is disabled for
the 8000 sub-devices and it will use the 8000 main-device’s timeout value.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 18

Checksum:

This checksum field must match the hardware setting. A mismatch will
always cause a communication failure with this module.

This field is disabled for the 8000 sub-devices and it will use the 8000
main-device’s checksum.

COM Port:

Specifies the COM port to be used. Please verfiy which COM port
number that the RS-485 network is using. Wrong settings will always cause
communication failure.

This field is disabled for the 8000 sub-devices. It will use the 8000
main-device’s COM port setting.

Baud Rate:

Specifies the baud rate to be used. Verify the module's current baud
rate. A wrong setting will always cause communication error for this module.

This field is disabled for the 8000 sub-devices. It will use the 8000
main-device’s baud rate.

Simulate I/O:

The “Simulate I/O” checkbox switches to a simulator of reading I/O.
Since the simulator does not open the TCP/IP or COM port, it is an easy way
to work with the server, to configure tags or to connect clients without
requiring any hardware. This field is disabled and not used for the 8000 main-
device.

Pending Time:

 Minimum interval time between two access. To activate this function,
NAPOPC_CE5 can work under optimized communication performance. If this
module only needs to be accessed 1 time per 5 seconds. You can set
pending time as 5000 ms. NAPOPC_CE5 will automatically spread time
resource to other modules which are connected with each other.

OK:

Click on the "OK" button to add the new module setting.

Cancel:
 Click on the "Cancel" button to avoid any changes.

Step 5: Click on the "OK" button to add this new module.

1.2.3.4 Adding a New Internal Device

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 19

Fig 1.2.3.4-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "DCON" radio button.

Step 4: Click on the "Internal Device" radio button.

Fig 1.2.3.4-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within a module
name. The clients use the "Device Name" and "Tags" to access its value. The
"Device Name" can not be the same as any other module.

Step 5: Click on the "OK" button to add this new module.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 20

1.2.3.5 Adding a New FRnet Device

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

Fig 1.2.3.5-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "FRnet" radio button.

Fig 1.2.3.5-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within

a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

Slot:
The WinPAC has 4 or 8 slots to plug in. This “slot” field indicates the

slot number that the I/O module used. The valid range is from 0 to 7.

Port:
The “Port” indicates the port number(0 or 1) of I-8172. Every FRnet I/O

modules have to use I-8172 as FRnet communication module. Please refer to
the I-8172 manual for more information.

FR-:

User can click on the Combo Box to select a FRnet module ID.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 21

Receiver Address:
 FRnet communication needs correct hardware configurations for the

sender address (SA) and receiver address (RA) on the host controller and the
remote module in the network. Please refer to the FRnet manual for more
information.

Sender Address:

FRnet communication needs correct hardware configurations for the
sender address (SA) and receiver address (RA) on the host controller and the
remote module in the network. Please refer to the FRnet manual for more
information..

Simulate I/O:

The “Simulate I/O” checkbox switches from reading I/O from the
module to running a simulator. Since the simulator does not open the COM
port, it is an easy way to work with the server, to configure tags or to connect
clients without requiring any hardware.

1.2.3.6 Adding a New Modbus RTU Controller

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

Fig 1.2.3.6-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "Modbus" radio button.

Step 4: Click on the "Modbus RTU" radio button.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 22

Fig 1.2.3.6-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within

a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

ISaGRAF:

Connect ISaGRAF controller

General Modbus Device:
Connect general modbus device

Address:

Specifies a Address for this controller. The default value is 1 and the
valid range is between 1 to 255.

Timeout:

Specifies timeout (Response time) value for this controller. A smaller
timeout value may cause communication failure and a larger timeout value
may reduce the performance of the client program.

Msg Delay:

Specifies message delay value for this controller. The default value is 0
ms. A smaller msg delay value may have a higher system loading, but it will
have a faster data exchange speed.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 23

Word Swap:
The “Word Swap” checkbox switches the interpretation of 4 Byte

values. Sometimes we need to make the checkbox “TRUE” in order to
achieve the purpose of Lo-Hi/Hi-Lo communication.

COM Port:

Specifies the COM port to be used. Please verfiy which COM port
number that the RS-485 network is using. Wrong settings will always cause
communication failure.

Baud Rate:

Specifies the baud rate to be used. Verify the module's current baud
rate. A wrong setting will always cause communication error for this controller.

Parity:

Specifies the parity scheme to be used. It is one of the following values.

Value Description

None No parity

Even Even

Odd Odd

Data Bits:

Specifies the number of bits in the bytes transmitted and received.

Stop Bits:

Specifies the number of stop bits to be used. It is one of the following values.
Value Description

1 1 stop bit
2 2 stop bits

1.5 1.5 stop bits

Simulate I/O:

The “Simulate I/O” checkbox switches from reading I/O from the
module to running a simulator. Since the simulator does not open the COM
port, it is an easy way to work with the server, to configure tags or to connect
clients without requiring any hardware.

Pending Time:

 Minimum interval time between two access. To activate this function,
NAPOPC_CE5 can work under optimized communication performance. If this
module only needs to be accessed 1 time per 5 seconds. You can set
pending time as 5000 ms. NAPOPC_CE5 will automatically spread time
resource to other modules which are connected with each other.

OK:

Click on the "OK" button to add the new controller setting.

Cancel:
 Click on the "Cancel" button to avoid any changes.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 24

Step 5: Click on the "OK" button to add this new device.

1.2.3.7 Adding a New Modbus ASCII Controller

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

Fig 1.2.3.7-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "Modbus" radio button.

Step 4: Click on the "Modbus ASCII" radio button.

Fig 1.2.3.7-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within

a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 25

ISaGRAF:
Connect ISaGRAF controller

General Modbus Device:

Connect general modbus device

Address:

Specifies a Address for this controller. The default value is 1 and the
valid range is between 1 to 255.

Timeout:

Specifies timeout (Response time) value for this controller. A smaller
timeout value may cause communication failure and a larger timeout value
may reduce the performance of the client program.

Msg Delay:

Specifies message delay value for this controller. The default value is 0
ms. A smaller msg delay value may have a higher system loading, but it will
have a faster data exchange speed.

Word Swap:

The “Word Swap” checkbox switches the interpretation of 4 Byte
values. Sometimes we need to make the checkbox “TRUE” in order to
achieve the purpose of Lo-Hi/Hi-Lo communication.

COM Port:

Specifies the COM port to be used. Please verfiy which COM port
number that the RS-485 network is using. Wrong settings will always cause
communication failure.

Baud Rate:

Specifies the baud rate to be used. Verify the module's current baud
rate. A wrong setting will always cause communication error for this controller.

Parity:

Specifies the parity scheme to be used. It is one of the following values.

Value Description

None No parity

Even Even

Odd Odd

Data Bits:

Specifies the number of bits in the bytes transmitted and received.

Stop Bits:

Specifies the number of stop bits to be used. It is one of the following values.
Value Description

1 1 stop bit
2 2 stop bits

1.5 1.5 stop bits

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 26

Simulate I/O:

The “Simulate I/O” checkbox switches from reading I/O from the
module to running a simulator. Since the simulator does not open the COM
port, it is an easy way to work with the server, to configure tags or to connect
clients without requiring any hardware.

Pending Time:

 Minimum interval time between two access. To activate this function,
NAPOPC_CE5 can work under optimized communication performance. If this
module only needs to be accessed 1 time per 5 seconds. You can set
pending time as 5000 ms. NAPOPC_CE5 will automatically spread time
resource to other modules which are connected with each other.

OK:

Click on the "OK" button to add the new controller setting.

Cancel:
 Click on the "Cancel" button to avoid any changes.

Step 5: Click on the "OK" button to add this new device.

1.2.3.8 Adding a New Modbus TCP Controller

Step 1: Click on the "Add/ New Device…" menu item or the icon to add a new
module.

Fig 1.2.3.8-1

Step 2: The "Select Device" window pops up.

Step 3: Click on the "Modbus" radio button.

Step 4: Click on the "Modbus TCP" radio button.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 27

Fig 1.2.3.8-2

Device Name:
Names with spaces or punctuation such as “|!.,” cannot be used within

a module name. The clients use the "Device Name" and "Tags" to access its
value. The "Device Name" can not be the same as any other module.

ISaGRAF:

Connect ISaGRAF controller

General Modbus Device:
Connect general modbus device

IP Address:
The uniqe IP address of your Modbus TCP controller.

Port:

You have to set up the value with “502” for communicating with ICP
DAS Modbus TCP controller

Address:

Specifies a Address for this controller. The default value is 1 and the
valid range is between 1 to 255.

Timeout:

Specifies timeout (Response time) value for this controller. A smaller
timeout value may cause communication failure and a larger timeout value
may reduce the performance of the client program.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 28

Msg Delay:
Specifies message delay value for this controller. The default value is 0

ms. A smaller msg delay value may have a higher system loading, but it will
have a faster data exchange speed.

Word Swap:

The “Word Swap” checkbox switches the interpretation of 4 Byte
values. Sometimes we need to make the checkbox “TRUE” in order to
achieve the purpose of Lo-Hi/Hi-Lo communication.

Simulate I/O:

The “Simulate I/O” checkbox switches from reading I/O from the
module to running a simulator. Since the simulator does not open the COM
port, it is an easy way to work with the server, to configure tags or to connect
clients without requiring any hardware.

Pending Time:

 Minimum interval time between two access. To activate this function,
NAPOPC_CE5 can work under optimized communication performance. If this
module only needs to be accessed 1 time per 5 seconds. You can set
pending time as 5000 ms. NAPOPC_CE5 will automatically spread time
resource to other modules which are connected with each other.

OK:

Click on the "OK" button to add the new controller setting.

Cancel:
 Click on the "Cancel" button to avoid any changes.

1.2.4 Adding a New Group

Step 1: Click on the "Add/ New Group" menu item or the icon to add a new group.

Step 2: The "Group" window pops up.

Fig 1.2.4-1

Name:
A "Group Name" may have any name, but avoid names with spaces or

punctuation such as “|!.,”. The "Group Name" must not be used twice. A group
can be defined as a subdirectory containing one or more tags. A device may
have many subgroups of tags. All tags belong to their module when they are
scanned to perform I/O.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 29

1.2.5 Adding a New Tag

1.2.5.1 Adding New Tags For I-7K/8K/87K/ZigBee/FRnet/XW Module

Step 1: Click on the "Add/Generate Tags" menu item to add new tags.

Fig 1.2.5.1-1

Step 2: “Generate Tags” function will generate tags for the device you choose.

Step 3: Double click the tag to check the property.

Step 4: Choice the “Settings” page. Because the tag belongs to the module-type

device, the “I/O Module” radio button is active.

Fig 1.2.5.1-2

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 30

Name:
Any "Tag Name" may be used, but avoid names with spaces or

punctuation such as “|!.,”. The clients will use the "Device Name" and "Tags"
to access its value. Hence the "Tag Name" cannot be a duplicate of another
tag in the same group.

Modbus address:

Specifies an unique modbus address for this tag in order to
communicate with modbus client. The default address is already an unique
one.

After that, you also need to choose the address type. There are four
address types you can choose.They are ”Input Coil”, “Output Coil”, “Input
Register”, and “Output Register” which depends on your tag property. It is
important to give an appropriate modbus address type and address value.

Address Type Range

Output Coil 000001 - 001000

Input Coil 100001 - 101000

Input Register 300001 - 301000

Output Register 400001 - 401000

Description:

Specifies the description text for this tag. This can be blank.

Type:

Shows the command to be used for this tag. Different modules support
different commands.

Channel:

Specifies the channel number to be used for this tag. The "Digital Input"
and "Digital Output" tags do not use this channel setting, because all channels
are read with one communication.

Simulation:
The valid signal is SINE, RAMP and RANDOM. This field is validated

when the module uses simulation I/O. Please refer to the "Adding A New
Device" section.

OK:

Click on the "OK" button to add the new tag setting.

Cancel:

Click on the "Cancel" button to avoid any changes.

Scaling:
Enable:

Check this check-box to enable the "Settings…" button.
Settings:

Click on this button to set the scaling feature.
For more information, please refer to the section "1.2.5.4 Scaling Settings".

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 31

1.2.5.2 Adding a New Tag For Internal Device

Step 1: Click on the "Add/ New Tag" menu item or the icon to add a new tag.

Step 2: The "Tag Properties" window pops up.

Step 3: Choice the “Settings” page. Because the tag belongs to the internal-type
device, the “Internal Device” radio button is active.

Fig 1.2.5.2-1

Name:

Any "Tag Name" may be used, but avoid names with spaces or
punctuation such as “|!.,”. The clients will use the "Device Name" and "Tags"
to access its value. Hence the "Tag Name" cannot be a duplicate of another
tag in the same group.

Modbus address:

Specifies an unique modbus address for this tag in order to
communicate with modbus client. The default address is already an unique
one.

After that, you also need to choose the address type. There are four
address types you can choose.They are ”Input Coil”, “Output Coil”, “Input
Register”, and “Output Register” which depends on your tag property. It is
important to give an appropriate modbus address type and address value.

Address Type Range

Output Coil 001001 - 020999

Input Coil 101001 - 120999

Input Register 301001 - 320999

Output Register 401001 - 420999

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 32

Description:

Specifies the description text for this tag. This can be blank.

1.2.5.3 Adding a New Tag For Modbus Device

Step 1: Click on the "Add/ New Tag" menu item or the icon to add a new tag.

Step 2: The "Tag Properties" window pops up.

Step 3: Choice the “Settings” page. Because the tag belongs to the controller-type

device, the “Controller” radio button is active.

Fig 1.2.5.3-1

Name:
Any "Tag Name" may be used, but avoid names with spaces or

punctuation such as “|!.,”. The clients will use the "Device Name" and "Tags"
to access its value. Hence the "Tag Name" cannot be a duplicate of another
tag in the same group.

Modbus address:

Specifies an unique modbus address for this tag in order to
communicate with modbus client. The default address is already an unique
one.

After that, you also need to choose the address type. There are four
address types you can choose.They are ”Input Coil”, “Output Coil”, “Input
Register”, and “Output Register” which depends on your tag property. It is
important to give an appropriate modbus address type and address value.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 33

Address Type Range

Output Coil 000001 - 001000

Input Coil 100001 - 101000

Input Register 300001 - 301000

Output Register 400001 - 401000

Description:

Specifies the description text for this tag. This can be blank.

Location:

Specifies the tag address. It must be the same with the the variable
address in the controller. Besides, you have to choice the location type. After
you choice the location number, there are four location types you can choice.
They are ”Input Coil”, “Output Coil”, “Input Register”, and “Output Register”.
When you monitor controller device(see 1.2.2 Monitoring Device), the
“Channel/Location” field will show a value according to the location and
location type as belows.

Location Type Range

Output Coil 000001 - 065536

Input Coil 100001 - 165536

Input Register 300001 - 365536

Output Register 400001 - 465536

Data:

Specifies the data type of this tag which’s location type is “Input
Register” or “Output Register”. NAPOPC_CE5 supports five kinds of data type
which are “Short”, “Long”, “Float”, “Word”, and “DWord”.

Data Type Definition Range

Short 16-bit signed integer -32768~32767

Long 32-bit signed integer -2147483648~2147483647

Float Floating-point variable -1.7E-308~1.7E+308

Word 16-bit unsigned integer 0~65535

DWord 32-bit unsigned integer 0~4294967295

The data type of “Input Coil” or “Output Coil” is “Bool”.

Simulation:
The valid signal is SINE, RAMP and RANDOM. This field is validated

when the module uses simulation I/O. Please refer to the "Adding A New
Device" section.

OK:

Click on the "OK" button to add the new tag setting.

Cancel:

Click on the "Cancel" button to avoid any changes.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 34

Scaling:
Enable:

Check this check-box to enable the "Settings…" button.
Settings:

Click on this button to set the scaling feature.

For more information, please refer to the section "1.2.5.4 Scaling Settings".

1.2.5.4 Scaling Settings

In general, the “Scaling” feature is only useful for the floating-point data type.

Fig 1.2.5.4-1

Raw Data:

Min: The original Minimum value. ([MinRaw])
Max: The original Maximum value. ([MaxRaw])

Scales to:

Units: The unit of the scaled value. (Just for reference only.)
Min: The scaled Minimum value. ([MinScale])
Max: The scaled Maximum value. ([MaxScale])

Conversion:

Linear:
Scaled Value = ((Original Value – [MinRaw]) / ([MaxRaw] – [MinRaw]))

* ([MaxScale] – [MinScale]) + [MinScale]

Square Root:
Scaled Value = ((sqrt(Original Value) – [MinRaw]) * ([MaxScale] – [MinScale]))

/ sqrt([MaxRaw] – [MinRaw]) + [MinScale]

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 35

Deadband(%):
 In general, keep "0" in this field. Deadband will only apply to items in the
group that have a dwEUType of Analog available. If the dwEUType is Analog, then
the EU Low and EU High values for the item can be used to calculate the range for
the item. This range will be multiplied with the Deadband to generate an exception
limit. An exception is determined as follows:

Exception if (absolute value of (last cached value - current value) >
 PercentDeadband * (EU High –EU Low))

OK:
Click the "OK" button to save these settings.

Cancel:

Click the "Cancel" button to avoid any changes.

1.2.6 Adding Multi Tags for Modbus Device
This function only work when the device’s protocol is Modbus.

Step 1: Click on the "Add/ Multi Tags" menu item

Fig 1.2.6 -1

Step 2: The "Add Multi Tags Dialog" dialog box pops up.

Step 3: Choose correct “Prototype” ,“Data Type” and key in Modbus address.

Fig 1.2.6 -2

Prototype:

There are four kinds of prototype for modbus tag. “Coil Input”, “Coil
Output”, “Register Input” and “Register Output”.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 36

Data Type:
“Bool” : 8 bits, True or False
“Short” : 16 bits, -32768 ~ 32767
“Long” : 32 bits, -2147483648. ~ 2147483647
“Float” : 32 bits, float numbers
“Word” : 16 bits, 0 ~ 65535
“DWORD” : 32 bits, 0 ~ 4294967295

Modbus Address:
 “From” : modbus address number of start tag, 1 ~ 65535
 “To” : modbus address number of end tag. 1 ~ 65535
Separation:
 Separation numbers between each tag. 1 ~ 100
OK:

Click on the "OK" button to add the new tag setting.
Cancel:

Click on the "Cancel" button to avoid any changes.

1.2.7 Read/Write the Tags
First, you have to use the "Monitor" function to see values of tags by checking

the "View/ Monitor" menu item. Select a tag and right click the mouse button. Then
select the "Properties.." option. Choose the “Read & Write” page to read/write the tag.

Step 1: Click the "View/ Monitor" menu item to enable monitor.

Step 2: Select a tag and right click the mouse button. Then select the "Properties.."

option.

Step 3: Choose the “Read & Write” page. You can see the “Tag name” and “Access

right” at the first. If the access right is “Read only!”, the write function is
disable.

Fig 1.2.7-1

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 37

Read Value/Value:
You can press the “Read!” button to read the tag value as you saw on

the “Tag-Window”.

Read Value/Quality:
Three kinds of qualities, “Good”, “Bad”, and “Uncertain”, would be

shown. If the communication status is good, the quality shows “Good”. If the
communication status has something wrong, the shows “Bad”. And the other
situation is “Uncertain”.

Read Value/Timestamp:
 It shows the time, when you read the tag.

Tag name:

It is the same with the “Name” at the “Settings” page. You can modify it
at the “Settings” page.

Access right:

There are two kinds of aceess rights, “Read Only!” and “Read&Write!”.
The access right depends on what kind of tag property it is. Please refer to the
“1.6 Adding A New Tag”

Write Value/Timestamp:
 It shows the time that the tag is written.

Write Value/Quality:

Three kinds of qualities, “Good”, “Bad”, and “Uncertain”, would be
shown. If the communication status is good, the quality shows “Good”. If the
communication status has something wrong, the shows “Bad”. And the other
situation is “Uncertain”.

Write Value/Value:

You can press the “Write!” button to write the value you key-in to the
tag. If the tag data type is “Boolean” the write value “0” means “OFF” and the
write value “not 0” means “ON”.

1.2.8 Editing A Device/Group/Tag properties

To edit an existing Device or Group, just select the Device or Group and then
select the "Properties…" option.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 38

Fig 1.2.8-1

To edit an existing Tag, just select the Tag and right click mouse button to

select "Properties…" option.

Fig 1.2.8-2

1.2.9 Deleting A Device/Group/Tag

To delete an existing Device or Group, just select the Device or Group and then
select the "Delete…" option.

Device

Group

Tag

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 39

Fig 1.2.9-1

To delete an existing Tag, just select the Tag and right click mouse button to
select "Delete…" option.

Fig 1.2.9-2

Device

Group

Tag

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 40

1.2.10 Generating Tags
This function lets you easily test the NAPOPC_CE5 in the simulation mode. It is

only valid if the selected device of module type has no sub “Module”, "Group" and
"Tag".

Step 1: Select a device of module type you want to generate tags.
Step 2: Click on the "Add/ Generate Tags" menu item.

Fig 1.2.10-1

Tags are generated depending on the Module-ID. Possible tags are “Analog

Input”, “Analog Output”, “Digital Input”, “Digital Output”, “Latched DI” and “Counter”.

1.2.11 Services Setup
This function lets you define which services you want to active for exchanging

data with the other programs. NAPOPC_CE5 provides “RPC Server”, “Modbus RTU”,
“Modbus ASCII”, “Modbus TCP”, and “Active ScanKernel” four services to be
choosed. In them, the “RPC Server” is a mechanism which allows
NAPOPC_ST/NAPOPC_XPE DA Server use NAPOPC_CE5 via “Remote Procedure
Call”. If you wanna create a “RPC” device at NAPOPC_ST/NAPOPC_XPE site,
please check this at NAPOPC_CE5 site. “Modbus RTU”, “Modbus ASCII”, and
“Modbus TCP” services would active immediately by checking. The “Active
ScanKernel” service should check at all situation except to be the intermediary
program between user application programs.

Step 1: Click on the "Services/Setup" menu item.

Fig 1.2.11-1

Step 2: Choose the services you want.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 41

RPC Server Port:
You have to set up the value with “505” for communicating with

NAPOPC_ST or NAPOPC_XPE.

COM Port:
Specifies the COM port to be used. Please verfiy which COM port

number that the RS-485 network is using. Wrong settings will always cause
communication failure.

Baudrate:

Specifies the baud rate to be used. Verify the module's current baud
rate. A wrong setting will always cause communication error for this controller.

Parity:

Specifies the parity scheme to be used. It is one of the following values.

Value Description

None No parity

Even Even

Odd Odd

Data Bits:

Specifies the number of bits in the bytes transmitted and received.

Stop Bits:

Specifies the number of stop bits to be used. It is one of the following values.
Value Description

1 1 stop bit
2 2 stop bits

1.5 1.5 stop bits

1.2.12 Rule Script Editor
This function lets you design your rule base for making your WinPAC-

8000/5000 to be a DCS via NAPOPC_CE5. The description of rule base of
NAPOPC_CE5 is like “IF…THEN…”. The left upper corner in the “Rule Script Editor”
has four conditions behind “IF” in which the variables are showed as modbus
address and combined with “AND/OR” each other. The right upper corner in the
“Rule Script Editor” has four outputs behind “THEN” in which the variables are
showed as modbus address and combined with “AND” each other. The relation
between timer value and other variables is “AND”.

If the variable behind “IF” is “0xxxxx” or ”1xxxxx”, the “Status” would be “0” or
“1”. The value “0” means “OFF” and the value “1” means “ON”. If the variable is
“3xxxxx” or ”4xxxxx”, the “Status” would depend on the data type of variable.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 42

Fig 1.2.12-1

Add:

Press this button to the “Rule list” after editing each rule.

Delete:
 Check the rules in the “Rule list”, and then press this button to delete.

Edit:

Click the rule in the “Rule list” to edit, and after that press this button to update.
Save:
 Save the “Rule list” to be “Rule.txt” after finishing editing.
Cancel:
 Leave this editor.
Active Rule Script:
 It would be active immediately after checking this option. If you wish to act the
“Rule script” after rebooting NAPOPC_CE5, you should save file with ”File/Save”.

1.2.13 File
This function lets you save and load the configurations of NAPOPC_CE5. For

taking the correct configuration file of NAPOPC_CE5 “*.tdb” after rebooting the
WinPAC-8000/5000, you not only use “File/Save” to save in the NAPOPC_CE5 but
also need to “Save and Reboot” in the “WinPAC Utility”. Moreover, NAPOPC_CE5
will automatically load the last configuration file with every launch.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 43

New:
 Clean current project and create a new project

Open:
 Load old NAPOPC_CE5 project

Save:
 Save current NAPOPC_CE5 project

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 44

Save as…:
 Save NAPOPC_CE5 project as a new one

1.2.14 About
Click on the "Help/ About NAPOPC_CE5" menu item to see the "About

NAPOPC_CE5" window. It shows the version number.

Step 1: Click on the "Help/ About NAPOPC_CE5" menu item.

Step 2: The "About NAPOPC_CE5" window pops up.

Fig 1.2.14-1

1.2.15 Minimize NAPOPC_CE5

If you want to minimize NAPOPC_CE5, please click on the top-right
corner.

Fig 1.2.15-1

 After clicking the question mark, NAPOPC_CE5 will minimize itself at the
status bar. It will be restored by double clicking it.

Fig 1.2.15-2

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 45

2 Quick Start

Please follow these steps:

1. Wiring Modules or Controllers.

Wiring modules in the RS-485 network.
Wiring controllers to WinPAC-8000/5000
(Refer to winpac8000_user_manual_v2.0.2.pdf)

2. Configuring Modules or Controllers.

Using the DCON Utility to set modules.
(Refer to winpac8000_user_manual_v2.0.2.pdf)

3. Running NAPOPC_CE5
Launch NAPOPC_CE5 by means of executing the " NAPOPCSvr_CE5.exe" or
"NAPCOP_CE5Boot.exe"

4. Searching Modules.
Refer to the "1.2.1 Searching Modules.." section to search modules.

5. Adding a new controller

Refer to the “1.2.3 Adding A New Device” section to add a new modbus RTU or
modbus TCP controller.

6. Saving Configuration.

Refer to the “1.2.13 File Save” section to save the configuration.

7. Closing NAPOPC_CE5.

Close NAPOPC_CE5 by clicking the "File/Exit" menu item.

NOTE: After above steps, please use "Save and Reboot" function at WinPAC
Utility to save registry exactlly.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 46

3 Remote Accessing

OPC Client has two ways to access the OPC Server. One is called “Local
Accessing”, and the other is called “Remote Accessing”. If the OPC Client and the
OPC Server are at the same computer, we said this kind of architecture is “Local
Accessing”. In other words, if the OPC Client should access OPC Server through a
network, we said this kind of architecture is “Remote Accessing”.

The following figure shows the integrated architecture including “Local

Accessing” and “Remote Accessing”. At the real Process Industry, the two ways are
often used at the same time. At the Process Management Layer, we often use “Local
Accessing” architecture to monitor and control manufacturing processes. At the
Business Management Layer, we just set up the OPC Client to collect the process
information from the Process Management Layer. If you just want to construct the
“Local Accessing” architecture, you do not need to read this chapter. If you want to
construct the “Remote Accessing” architecture, you have to know how to set up the
DCOM between OPC Client and OPC Server.

Figure 3-0-1 Local access and Remote access architecture.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 47

3.1 System Requirement

To access a remote OPC server over a network, it is required to enable the
DCOM mechanism on both stations, where the client and server are resided.

It is not possible to launch a secure process on a Windows 95 computer from a
client computer. All processes in Windows 95 run in the security context of the
currently logged-on user; therefore, DCOM on Windows 95 does not support remote
activation. A server application on a Windows 95 computer will have to be launched
manually or by some other mechanism to be accessed by a client application on
another computer. Consequently, the "DefaultLaunchPermissions" and
"LaunchPermissions" registry values have no affect on Windows 95.

Platform Does the platform support the DCOM?

Windows 95 No.
 Users need to download and install the DCOM95.EXE and
DCM95CFG.EXE from Microsoft’s web site to enable the remote
access.

Windows 98 Yes.
 Windows 98 supports the DCOM mechanism. It is
recommended to upgrade to the newest version of DCOM98. The
newest DCOM98 is also available at Microsoft’s web site.

Windows NT 4.0

 Yes.
 Windows NT 4.0 supports the DCOM mechanism. It is
recommended to upgrade to the newest Service Pack for Windows
NT 4.0 (Service Pack 3 or newer one).

Windows 2000 Yes.
 Windows 2000 supports the DCOM mechanism.

Windows XP Yes.
Windows XP supports the DCOM mechanism.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 48

3.2 Configuring DCOM

Before making changes, register the server application in the registry of both
the client and server computers. This may involve either running the server
applications setup program or running the server application, then shutting it down
on both computers. The server application does not need to reside on the client
computer.

If the server uses custom interfaces, the marshaling code must be installed on

the client and server computers. Automation servers that support "vtbl-binding" must
install their type libraries on the client and server computers. Automation servers that
do not support "vtbl-binding" do not need to install their type libraries on the client
computer.

After changing the registry, run the client application on the client computer.

The DCOM looks at the server application registry entries on the client computer and
determines the name of the server computer. It will then connects to the server
computer, use the server computer registry to determine the location of the server
application, and start the server application on that computer.

You can change the registry with the DCOMCnfg.exe tool, the OLE Viewer tool,

or manually. For more information on using OLE Viewer or manual changes, please
refer to the “Q158582, HOWTO: Configure a Non-DCOM Server and Client to Use
DCOM” article on Microsoft’s web site. For more information on using
DCOMCnfg.exe to configure the DCOM, please refer to “Inside Distributed COM",
written by Guy Eddon and Henry Eddon in 1998 for Microsoft Press.

This section shows you how to configure the DCOM status with

DCOMCnfg.exe graphic-driven utility (can be found in the Windows NT system32
folder or in the Windows95/98 system folder) on the client and server computer.

The following table shows three combinations of DCOM settings related to

WinPAC. You can see WinPAC can be client site and server site with itself, but
WinPAC only can be server site against XPAC and PC. The limitation is due to
DCOM security. We only choose Windows XP for example to set up DCOM because
there are too many kinds of OS on PC. You can use other Microsoft desktop
operation system on our PC.

Client Site Server Site

PC(NAPOPC_ST Server) WinPAC(NAPOPC_CE5 Server)

XPAC(NAPOPC_XPE Server) WinPAC(NAPOPC_CE5 Server)

WinPAC(NAPOPC_CE5 Server) WinPAC(NAPOPC_CE5 Server)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 49

3.2.1 Configuring On the Server Site (WinPAC)

System Requirement

OS version:
WinPAC OS 1.3.04 or later

Program:
NAPOPC_CE5
DCOMCnfg.exe
WinPAC Utility 2.0.2.1 or later

Configuring DCOM

Step 1: Run the \\NAPOPC_CE5\napopc_ce5boot.exe program to register.

Step 2: Run the dcomcnfg.exe program and choose “Default”.

Step 3: Select the “Access” button to add an account which is current connection
account from client site.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 50

Step 4: Select the “Launch” button to add an account which is current connection
account from client site as above.

Step 5: Execute “WinPAC Utility->Network Setting->Users and Password”

Step 6: Fill out “User name”, “Password”, and press “Add”. The “User name” and
“Password” must be the account we set at Step 3. After pressing “Add”, press
“Setting” to finish all settings.

Step 7: Run WinPAC Utility to save and reboot.

3.2.2 Configuring On the Client Site (PC)

Configuring the Firewall

Step1: By default the windows firewall is set to “On”. This setting is recommended
by Microsoft and by OPC to give your machine the highest possible protection. For
trouble shooting, you may wish to temporarily turn off the firewall to prove or
disprove that the firewall configuration is the source of any communication failure.
Note: It may be appropriate to permanently turn off the firewall if the machine is
sufficiently protected behind a corporate firewall. When turned off, the individual
firewall settings outlined here need not be performed to allow OPC communication.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 51

Step 2: Select the .Exceptions tab and add all OPC Clients and Servers to the
exception list. Also add Microsoft Management Console (used by the DCOM
configuration utility in the next section) and the OPC utility OPCEnum.exe found in
the Windows\System32 directory.

In the Add a Program dialog, there is a listing of most applications on the machine,
but note that not all of them show up on this list. Use the “Browse” button to find
other executables installed on the computer.

Note: Only EXE files are added to the exceptions list. For in-process OPC Servers

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 52

and Clients (DLLs and OCXs) you will need to add the EXE applications that call
them to the list instead.

Step 3: Add TCP port 135 as it is needed to initiate DCOM communications, and
allow for incoming echo requests. In the Exceptions tab of the Windows Firewall,
click on Add Port.

In the Add a Port dialog, fill out the fields as follows:
Name: DCOM
Port number: 135

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 53

Choose the TCP radio button

Creating the Account

Step 1: Create a account which must be the same with the account of server site.

Configuring DCOM

Step 1: Run the dcomcnfg.exe program to launch component services. Right clieck
“My Computer” and choose “Properties”.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 54

Step 2: Select the "Default Properties" tab page.

Step 3: Use the following settings:

Field Name Set to

Enable Distributed COM on this computer Checked

Default Authentication Level: Default

Default Impersonation Level: Identify

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 55

Step 4: Select the "COM Security" tab page.

Step 5: Click on the “Edit Limits…” of “Access Permissions” button to set.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 56

Step 6: Click on the “Edit Default…” of “Access Permissions” button to set.

Step 7: Click on the “Edit Limits…” of “Launch and Activation Permissions” button to
set.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 57

Step 8: Click on the “Edit Default…” of “Launch and Activation Permissions” button
to set.

Step 9: Right click on the “NAPOPC DA Server” of “DCOM Config” button and select
“Properties”.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 58

Step 10: Select the "Location" tab page and check “Run application on the following
computer”. And enter the Server IP here.

Step 11: Select the "Identity" tab page and check “The launching user”

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 59

Step 12: Restart PC

3.2.3 Configuring On the Client Site (XPAC)

Configuring the Firewall

Step1: By default the windows firewall is set to “On”. This setting is recommended
by Microsoft and by OPC to give your machine the highest possible protection. For
trouble shooting, you may wish to temporarily turn off the firewall to prove or
disprove that the firewall configuration is the source of any communication failure.

Note: It may be appropriate to permanently turn off the firewall if the machine is
sufficiently protected behind a corporate firewall. When turned off, the individual
firewall settings outlined here need not be performed to allow OPC communication.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 60

Step 2: Select the .Exceptions tab and add all OPC Clients and Servers to the
exception list. Also add Microsoft Management Console (used by the DCOM
configuration utility in the next section) and the OPC utility OPCEnum.exe found in
the Windows\System32 directory.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 61

In the Add a Program dialog, there is a listing of most applications on the machine,
but note that not all of them show up on this list. Use the “Browse” button to find
other executables installed on the computer.

Note: Only EXE files are added to the exceptions list. For in-process OPC Servers
and Clients (DLLs and OCXs) you will need to add the EXE applications that call
them to the list instead.

Step 3: Add TCP port 135 as it is needed to initiate DCOM communications, and
allow for incoming echo requests. In the Exceptions tab of the Windows Firewall,
click on Add Port.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 62

In the Add a Port dialog, fill out the fields as follows:
Name: DCOM
Port number: 135
Choose the TCP radio button

Creating the Account

Step 1: Create a account which must be the same with the account of server site.

Configuring DCOM

Step 1: Run the dcomcnfg.exe program to launch component services. Right clieck
“My Computer” and choose “Properties”.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 63

Step 2: Select the "Default Properties" tab page.

Step 3: Use the following settings:

Field Name Set to

Enable Distributed COM on this computer Checked

Default Authentication Level: Default

Default Impersonation Level: Identify

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 64

Step 4: Select the "COM Security" tab page.

Step 5: Click on the “Edit Limits…” of “Access Permissions” button to set.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 65

Step 6: Click on the “Edit Default…” of “Access Permissions” button to set.

Step 7: Click on the “Edit Limits…” of “Launch and Activation Permissions” button to
set.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 66

Step 8: Click on the “Edit Default…” of “Launch and Activation Permissions” button
to set.

Step 9: Right click on the “NAPOPC_XPE DA Server” of “DCOM Config” button and
select “Properties”.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 67

Step 10: Select the "Location" tab page and check “Run application on the following
computer”. And enter the Server IP here.

Step 11: Select the "Identity" tab page and check “The launching user”

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 68

Step 12: Restart XPC

3.2.4 Configuring On the Client Site (WinPAC)

System Requirement

OS version:
WinPAC OS 1.3.04 or later

Program:
NAPOPC_CE5
DCOMCnfg.exe
WinPAC Utility 2.0.2.1 or later

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 69

Configuring DCOM

Step 1: Run the \\NAPOPC_CE5\napopc_ce5boot.exe program to register.

Step 2: Run the dcomcnfg.exe program and choose “Default”.

Step 3: Select the “Access” button to add an account which is identical to the
account on the server site.

Step 4: Select the “Launch” button to add an account which is identical to the
account on the server site as above.

Step 5: Select “Class” button of “DCOM Configuration Utility” to setup “Class

Activation”. Uncheck “Run Locally” and check “Run remotelly”. Enter IP
address of server site.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 70

Step 6: Execute “WinPAC Utility->Network Setting->Users and Password”

Step 7: Fill out “User name”, “Password”, and press “Add”. The “User name” and
“Password” must be the account we set at Step 3. After pressing “Add”, press
“Setting” to finish all settings.

Step 8: Select “Control Panel” “Owner Properties” ”Network ID” and fill out the

User name/Password which is identical to the account on the server site.

Step 9: Run WinPAC Utility to save and reboot.

Step 10: Execute OPC client for testing.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 71

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 72

4 The Application of NAPOPC_CE5

User can develop an incredible application combining with OPC client, Modbus
RTU/TCP client, NAPOPC_ST, and NAPOPC_XPE. If using “Rule Script” inside the
NAPOPC_CE5, user can not only save lots of time developing system, but also
create a more stable and safer system. The five sections below describe the timing
and method to apply in different kind of situation.

4.1 NAPOPC_CE5 with OPC Client
NAPOPC_CE5 is designed as OPC based architecture, therefore it supports

OPC client naturally. Many WinCE based OPC clients in the world can apply with it.
Please refer to its user manual for detail information. The following sections show
you how “InduSoft Web Studio Version 6.0” connects to Quicker.

InduSoft Web Studio is a powerful, integrated collection of automation tools that
includes all the building blocks needed to develop human machine interfaces (HMIs),
supervisory control and data acquisition (SCADA) systems, and embedded
instrumentation and control applications. Web Studio runs in native Windows NT,
2000, XP and CE.Net 5.0 environments and conforms to industry standards such as
Microsoft DNA, OPC, DDE, ODBC, XML, SOAP and ActiveX. For more information
please visit: http://www.indusoft.com/

Step 1: Before using the InduSoft OPC Client module, you need to configure the

NAPOPC_CE5 on the WinPAC-8000/5000 first.

http://www.indusoft.com/

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 73

Step 2: Run InduSoft Web Studio version 6.0

Step 3: Create a new project.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 74

Step 4: In the Studio Workspace window, click the OPC tab, right-click the OPC
folder, and click “Insert”:

Step 5: OPC Attributes window pops up.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 75

Step 6: Click on the Server Identifier: Write “NAPOPC.Svr”.

The configuration table for OPC has the following entries:

 Description: this field is used for documentation only. The OPC Client module
ignores it.

 Server Identifier: this field should contain the name of the server you want to
connect. If the server is installed in the computer, its name can be selected
through the list box.

 Disable: this field should contain a tag or a constant. If its value is different of
zero, the communication with the OPC server is disabled.

 Update Rate: this field indicates how often the server will update this group in
milliseconds. If it is zero indicates the server should use the fastest practical
rate.

 Percent Deadband: this field indicates the percent change in an item value
that will cause a notification by the server. It's only valid for analog items.

 Tag Name: these fields should contain the tags linked to the server items.

 Item: these fields should contain the name of the server's items

Step 7: In the first cell of the Tag Name column type the tag name created in

database.

Step 8: In the first cell of the item, you have to write it the same as the

NAPOPC_CE5 configuration. Please refer to the demo at “CD:\Compact
Flash\ NAPOPC_CE5\Demo\InduSoft\Full”

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 76

Step 9: Repeat the step between 7 and 8 to add more tags.

Step 10: Creating a Text String for the Input/Output Dynamic. Click the Text icon on
the Object Editing toolbar. Position the crosshairs in the MAIN.SCR. Press
the”#” key three times to display “###” in the gray square.

Step 11: Click the Text Input/Output property icon on the Object Editing toolbar. Text

I/O appears in the drop-down menu of the Object Properties window. In the
Tag/Expression field type the tag name you want to link.

Step 12: After you finish the configuration. Execute the InduSoft Remote Agent by

clicking “Compact Flash\Indusoft\CEServer.exe”

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 77

Step 13: Click “Project Execution Environment” then select “Network IP” to press

the IP of WinPAC-8000/5000.

Step 14: Click “Connect” then select “Application Send to Target”

Step 15: Execute your application by clicking “Start”. After that, you will see your

runtime HMI.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 78

4.2 NAPOPC_CE5 with Modbus RTU/TCP Client
If the third party software which supports Modbus RTU/TCP client wants to

connect to NAPOPC_CE5, just remember to check the services “Modbus RTU” and
“Modbus TCP”. Please refer to the user manual of the third party made for setting.
And for NAPOPC_CE5, please refer to the section ”1.2.11 Services Setup”.

4.2.1 Supported Modbus Commands
The Modbus protocol establishes the format for the master’s query by placing

into the device (or broadcast) address, a function code defining the requested action,
any data to be sent, and an error checking field. The slave’s response message is

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 79

also constructed using the Modbus protocol. It contains fields confirming the action
taken, any data to be returned, and an error-checking field. If an error occurred in
receipt of the message, or if the slave is unable to perform the requested action, the
slave will construct an error message and send it as its response.

Code Description I/O Unit Min Max

Code Description I/O Unit Min Max

01(0x01) Read Coil Status In Bit 1 2000(0x7D0)

02(0x02) Read Discrete Inputs Status In Bit 1 2000(0x7D0)

03(0x03) Read Holding Registers Registers In Word 1 125(0x7D)

04(0x04) Read Input Registers Registers In Word 1 125(0x7D)

05(0x05) Write Single Coil Coil Out Bit 1 1

06(0x06) Write Single Register Register Out Word 1 1

15(0x0F) Write Multiple Coils Coils Out Bit Bit 1 800

16(0x10) Write Multiple registers Registers Out Word Word 1 100

4.3 NAPOPC_CE5 with NAPOPC_ST/NAPOPC_XPE
You can construct a complete control system from top to bottom via

NAPOPC_CE5 combining with NAPOPC_ST/NAPOPC_XPE and SCADA software.
Please refer to the ”1.2.11 Services Setup” to set up NAPOPC_CE5 services
depending on which communication way that NAPOPC_ST/NAPOPC_XPE used.
NAPOPC_CE5 provides three ways, “Modbus TCP”, “Modbus RTU”, and “RPC
Server”, to communicate with NAPOPC_ST/NAPOPC_XPE. At NAPOPC_ST/
NAPOPC_XPE site, please refer to the ”Adding A New Modbus TCP Controller”, ”
Adding A New Modbus RTU Controller” and ”Adding A New RPC Controller” in the
NAPOPC_ST/NAPOPC_XPE user manual.

4.4 NAPOPC_CE5 with User Application
Users can develop their own application program with eVC++, VB.NET, or

VC#.NET and share data with NAPOPC_CE5 via Quicker API. User can use the
Modbus RTU/TCP services, or just use the share memory inside NAPOPC_CE5 to
exchange data between different programs. We do not focus on the programming
skill of eVC++/VB.NET/VC#.NET. We just focus on the Quicker API below.

4.4.1 Quicker API for eVC++ Developer
Step 1:

Install pac270_sdk_2008xxxx.msi
Step 2:

Create a new eVC++ project with choosing “Win32[WCE ARMV4I] CPU” option
Step 3:

#include "WinConAgent.h"
Step 4:

Refer to the following functions to design your own program
Step 5:

Build your project with release mode.

Note: Quicker.dll and eVC++ application program must be copied to the same folder
in the WinPAC-8000/5000

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 80

System Function
unsigned char StartQuicker(unsigned char iMode)

unsigned char StopQuicker(void)

unsigned char GetVersion()

QuickerIO Function
unsigned char GetDIO(unsigned short iMBAddr, unsigned char *iRecv, unsigned char iAttribute);

unsigned char GetAIO_Short(unsigned short iMBAddr, short *iRecv, unsigned char iAttribute);

unsigned char GetAIO_Long(unsigned short iMBAddr, flong *iRecv, unsigned char iAttribute);

unsigned char GetAIO_Float(unsigned short iMBAddr, float *iRecv, unsigned char iAttribute);

unsigned char GetAIO_Word(unsigned short iMBAddr, unsigned short *iRecv, unsigned char iAttribute);

unsigned char GetAIO_DWord(unsigned short iMBAddr, unsigned long *iRecv, unsigned char iAttribute);

unsigned char SetDO(unsigned short iMBAddr, unsigned char iSend);

unsigned char SetAO_Short(unsigned short iMBAddr, short *iSend);

unsigned char SetAO_Long(unsigned short iMBAddr, long *iSend);

unsigned char SetAO_Float(unsigned short iMBAddr, float *iSend);

unsigned char SetAO_Word(unsigned short iMBAddr, unsigned short *iSend);

unsigned char SetAO_DWord(unsigned short iMBAddr, unsigned long *iSend);

Modbus Function
unsigned char MBSetCoil(unsigned short iMBAddress, unsigned char iStatus, unsigned char iAttr)

unsigned char MBGetCoil(unsigned short iMBAddress, unsigned char *iStatus, unsigned char iAttr)

unsigned char MBSetReg(unsigned short iMBAddress, short iStatus, unsigned char iAttr)

unsigned char MBGetReg(unsigned short iMBAddress, short *iStatus, unsigned char iAttr)

unsigned char MBSetReg_Long(unsigned short iMBAddress, long iStatus, unsigned char iAttr)

unsigned char MBGetReg_Long(unsigned short iMBAddress, long *iStatus, unsigned char iAttr)

unsigned char MBSetReg_DWord(unsigned short iMBAddress, unsigned long iStatus, unsigned char iAttr)

unsigned char MBGetReg_DWord(unsigned short iMBAddress, unsigned long *iStatus, unsigned char iAttr)

UserShare Function
unsigned char UserSetCoil(unsigned short iUserAddress, unsigned char iStatus);

unsigned char UserGetCoil(unsigned short iUserAddress, unsigned char *iStatus);

unsigned char UserSetReg_Str(unsigned short iUserAddress, char *iStatus);

unsigned char UserGetReg_Str(unsigned short iUserAddress, char *iStatus);

unsigned char UserSetReg_Float(unsigned short iUserAddress, float *iStatus);

unsigned char UserGetReg_Float(unsigned short iUserAddress, float *iStatus);

unsigned char UserSetReg_Short(unsigned short iUserAddress, short *iStatus);

unsigned char UserGetReg_Short(unsigned short iUserAddress, short *iStatus);

unsigned char UserSetReg_Long(unsigned short iUserAddress, long *iStatus);

unsigned char UserGetReg_Long(unsigned short iUserAddress, long *iStatus);

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 81

4.4.1.1 System Function

This group provides three functions for users to start and stop the "NAPOPCSvr_CE5.exe"

and get NAPOPC_CE5 version before using "QuickerIO Function" and "Modbus Function".

StartQuicker
This function launches the NAPOPC_CE5 with different mode.

Syntax

Parameters

iMode

[in] The decimal number of kernel mode. It is always 1 now. It will provide another

mode in the future.

Return Values

0 indicates success. If the NAPOPC_CE5 has been run, the function will return mode

number. (Please refer to the Appendix 2.1)

Remarks

You have to call this function to launch the NAPOPC_CE5 before using the QuickerIO

and Modbus functions.

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Start up the NAPOPC_CE5 with mode 1

if (StartQuicker(1) == 0){

AfxMessageBox(_T("Start NAPOPC_CE5 successfully!"));

}

else{

AfxMessageBox(_T("NAPOPC_CE5 has been started!"));

}

[VB.NET]

Quicker.System.StartQuicker(1)

[VC#.NET]

Quicker.System.StartQuicker(1)

[eVC++]

unsigned char StartQuicker(unsigned char iMode)

[VB.NET/VC#.NET]

byte Quicker.System.StartQuicker(byte iMode)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 82

StopQuicker
This function stops the NAPOPC_CE5.

Syntax

Parameters

Return Values

0 indicates success. WCA_Stop means NAPOPC_CE5 has been stopped.

WCA_NOT_MASTER means not the main AP which calls NAPOPC_CE5 (Please refer to

the Appendix 2.1)

Remarks

 NAPOPC_CE5 only can be stopped by the AP which launched it.

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Stop the NAPOPC_CE5

if(StopQuicker() == 0){

 AfxMessageBox(_T("Stop NAPOPC_CE5 successfully!"));

}

else if(StopQuicker() == WCA_Stop){

 AfxMessageBox(_T("NAPOPC_CE5 has been stopped!"));

}

else{

 AfxMessageBox(_T("Can not terminate the NAPOPC_CE5!"));

}

[VB.NET]

Quicker.System.StopQuicker()

[VC#.NET]

Quicker.System.StopQuicker()

[eVC++]

unsigned char StopQuicker(void)

[VB.NET/VC#.NET]

byte Quicker.System.StopQuicker()

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 83

GetVersion
This function gets the NAPOPC_CE5 version.

Syntax

Parameters

Return Values

The return value means the version value. Ex. 209 means v2.09.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the NAPOPC_CE5 version

unsigned char iQversion;

iQversion = GetVersion();

[VB.NET]

Dim iQversion As Byte

iQversion = Quicker.System.GetVerison()

[VC#.NET]

byte iQversion = 0;

iQversion = Quicker.System.GetVersion();

[eVC++]

unsigned char GetVersion(void)

[VB.NET/VC#.NET]

byte Quicker.System.GetVersion()

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 84

4.4.1.2 QuickerIO Function

This group provides 12 functions for users to Get/Set data which’s modbus address is

mapping from 1 to 1000 in NAPOPCSvr_CE5. The data which’s modbus address is mapping

from 1 to 1000 can be accessed by OPC client and modbus master via NAPOPC_CE5.

GetDIO
This function can get a single digital I/O status from a specific modbus address.

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iRecv

[out] The digital status of specific tag. 1 means ON. 0 means OFF.

iAttribute

[in] Assign which kind of digital status you want get. 1 means digital input. 0 means

digital output.

Return Values

0 indicates success. WCA_ATT_ERROR means the iAttibute is neither 0 nor 1.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the digital I/O status

//Get the digital input status from modbus address 1

unsigned char iRecvIn;

GetDIO(1,&iRecvIn,1);

//Get the digital output status from modbus address 2

unsigned char iRecvOut;

GetDIO(2,&iRecvOut,0);

[VB.NET]

Dim m_GetDIOVal As Byte

 Quicker.QuickerIO.GetDIO(7, m_GetDIOVal, 0)

[VC#.NET]

byte m_GetDIOVal;

Quicker.QuickerIO.GetDIO(7,out m_GetDIOVal, 0);

[eVC++]

unsigned char GetDIO(unsigned short iMBAddr, unsigned char *iRecv,

unsigned char iAttribute

[VB.NET/VC#.NET]

byte GetDIO(ushort iMBAddr, out byte iRecv, byte iAttribute)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 85

GetAIO_Short
This function can get a single analog I/O value from a specific modbus address.

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iRecv

[out] The analog value of specific tag.

iAttribute

[in] Assign which kind of analog value you want get.

Return Values

0 indicates success. WCA_ATT_ERROR means the iAttibute is neither 0 nor 1.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the analog I/O value

//Get the analog input value from modbus address 1

short sRecvIn;

GetAIO_Short(1,&sRecvIn,1);

//Get the analog output value from modbus address 2

short sRecvOut;

GetAIO_Short(2,&sRecvOut,0);

[VB.NET]

Dim m_GetAIOVal As short

 Quicker.QuickerIO.GetAIO_Short(7, m_GetAIOVal, 0)

[VC#.NET]

short m_GetAIOVal;

Quicker.QuickerIO.GetAIO_Short(7,out m_GetAIOVal, 0);

[eVC++]

unsigned char GetAIO_Short(unsigned short iMBAddr, short *iRecv,

unsigned char iAttribute)

[VB.NET/VC#.NET]

byte GetAIO_Short(ushort iMBAddr, out short fRecv, byte iAttribute)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 86

GetAIO_Long
This function can get a single analog I/O value from a specific modbus address.

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iRecv

[out] The analog value of specific tag.

iAttribute

[in] Assign which kind of analog value you want get.

Return Values

0 indicates success. WCA_ATT_ERROR means the iAttibute is neither 0 nor 1.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the analog I/O value

//Get the analog input value from modbus address 1

long lRecvIn;

GetAIO_Long(1,&fRecvIn,1);

//Get the analog output value from modbus address 2

long lRecvOut;

GetAIO_Long(2,&fRecvOut,0);

[VB.NET]

Dim m_GetAIOVal As long

 Quicker.QuickerIO.GetAIO_Long(7, m_GetAIOVal, 0)

[VC#.NET]

long m_GetAIOVal;

Quicker.QuickerIO.GetAIO_Long(7,out m_GetAIOVal, 0);

[eVC++]

unsigned char GetAIO_Long(unsigned short iMBAddr, long *iRecv,

unsigned char iAttribute)

[VB.NET/VC#.NET]

byte GetAIO_Long(ushort iMBAddr, out long fRecv, byte iAttribute)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 87

GetAIO_Float
This function can get a single analog I/O value from a specific modbus address.

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iRecv

[out] The analog value of specific tag.

iAttribute

[in] Assign which kind of analog value you want get.

Return Values

0 indicates success. WCA_ATT_ERROR means the iAttibute is neither 0 nor 1.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the analog I/O value

//Get the analog input value from modbus address 1

float fRecvIn;

GetAIO_Float(1,&fRecvIn,1);

//Get the analog output value from modbus address 2

float fRecvOut;

GetAIO_Float(2,&fRecvOut,0);

[VB.NET]

Dim m_GetAIOVal As Single

 Quicker.QuickerIO.GetAIO_Float(7, m_GetAIOVal, 0)

[VC#.NET]

float m_GetAIOVal;

Quicker.QuickerIO.GetAIO_Float(7,out m_GetAIOVal, 0);

[eVC++]

unsigned char GetAIO_Float(unsigned short iMBAddr, float *iRecv,

unsigned char iAttribute)

[VB.NET/VC#.NET]

byte GetAIO_Float(ushort iMBAddr, out float fRecv, byte iAttribute)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 88

GetAIO_Word
This function can get a single analog I/O value from a specific modbus address.

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iRecv

[out] The analog value of specific tag.

iAttribute

[in] Assign which kind of analog value you want get.

Return Values

0 indicates success. WCA_ATT_ERROR means the iAttibute is neither 0 nor 1.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the analog I/O value

//Get the analog input value from modbus address 1

unsigned short usRecvIn;

GetAIO_Word(1,&fRecvIn,1);

//Get the analog output value from modbus address 2

unsigned short usRecvOut;

GetAIO_Word(2,&usRecvOut,0);

[VB.NET]

Dim m_GetAIOVal As UInt16

 Quicker.QuickerIO.GetAIO_Word(7, m_GetAIOVal, 0)

[VC#.NET]

ushort m_GetAIOVal;

Quicker.QuickerIO.GetAIO_Word(7,out m_GetAIOVal, 0);

[eVC++]

unsigned char GetAIO_Word(unsigned short iMBAddr, unsigned short *iRecv,

unsigned char iAttribute)

[VB.NET/VC#.NET]

byte GetAIO_Word(ushort iMBAddr, out ushort fRecv, byte iAttribute)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 89

GetAIO_DWord
This function can get a single analog I/O value from a specific modbus address.

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iRecv

[out] The analog value of specific tag.

iAttribute

[in] Assign which kind of analog value you want get.

Return Values

0 indicates success. WCA_ATT_ERROR means the iAttibute is neither 0 nor 1.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get the analog I/O value

//Get the analog input value from modbus address 1

unsigned long ulRecvIn;

GetAIO_DWord(1,&ulRecvIn,1);

//Get the analog output value from modbus address 2

unsigned long ulRecvOut;

GetAIO_DWord(2,&ulRecvOut,0);

[VB.NET]

Dim m_GetAIOVal As UInt64

 Quicker.QuickerIO.GetAIO_DWord(7, m_GetAIOVal, 0)

[VC#.NET]

ulong m_GetAIOVal;

Quicker.QuickerIO.GetAIO_DWord(7,out m_GetAIOVal, 0);

[eVC++]

unsigned char GetAIO_DWord(unsigned short iMBAddr, unsigned long *iRecv,

unsigned char iAttribute)

[VB.NET/VC#.NET]

byte GetAIO_DWord(ushort iMBAddr, out ulong fRecv, byte iAttribute)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 90

SetDO
This function can set a single digital output status to a specific modbus address

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iSend

[in] The digital status of specific tag. 1 means ON. 0 means OFF.

Return Values

0 indicates success.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set the digital output ON to modbus address 1

SetDO(1,1);

[VB.NET]

Dim m_SetDOVal As Byte

 Quicker.QuickerIO.SetDO(1, m_SetDOVal)

[VC#.NET]

byte m_SetDOVal;

Quicker.QuickerIO.SetDO(1, m_SetDOVal);

[eVC++]

unsigned char SetDO(unsigned short iMBAddr, unsigned char iSend)

[VB.NET/VC#.NET]

byte SetDO(ushort iMBAddr, byte iSend)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 91

SetAO_Short
This function can set a single analog output value to a specific modbus address

Syntax

Parameters
iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iSend

[out] The analog value of specific tag.

Return Values

 0 indicates success.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set the analog output value as 42 to modbus address 1

SetAO_Short(1,42);

[VB.NET]

Quicker.QuickerIO.SetAO_Short(1, 42)

[VC#.NET]

Quicker.QuickerIO.SetAO_Short(1, 42);

[eVC++]

unsigned char SetAO_Short(unsigned short iMBAddr, short *iSend)

[VB.NET/VC#.NET]

byte SetAO_Short(ushort iMBAddr, out short iSend)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 92

SetAO_Long
This function can set a single analog output value to a specific modbus address

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iSend

[out] The analog value of specific tag.

Return Values

 0 indicates success.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set the analog output value as 2323 to modbus address 1

SetAO_Long(1,2323);

[VB.NET]

Quicker.QuickerIO.SetAO_Long(1, 2323)

[VC#.NET]

Quicker.QuickerIO.SetAO_Long(1, 2323);

[eVC++]

unsigned char SetAO_Long(unsigned short iMBAddr, long *iSend)

[VB.NET/VC#.NET]

byte SetAO_Long(ushort iMBAddr, out long iSend)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 93

SetAO_Float
This function can set a single analog output value to a specific modbus address

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iSend

[out] The analog value of specific tag.

Return Values

 0 indicates success.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set the analog output value as 5.5 to modbus address 1

SetAO_Float(1,5.5);

[VB.NET]

Quicker.QuickerIO.SetAO_Float(1, 5.5)

[VC#.NET]

Quicker.QuickerIO.SetAO_Float(1, 5.5);

[eVC++]

unsigned char SetAO_Float(unsigned short iMBAddr, float *iSend)

[VB.NET/VC#.NET]

byte SetAO_Float(ushort iMBAddr, out float iSend)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 94

SetAO_Word
This function can set a single analog output value to a specific modbus address

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iSend

[out] The analog value of specific tag.

Return Values

 0 indicates success.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set the analog output value as 222 to modbus address 1

SetAO_Word(1,222);

[VB.NET]

Quicker.QuickerIO.SetAO_Word(1, 222)

[VC#.NET]

Quicker.QuickerIO.SetAO_Word(1, 222);

[eVC++]

unsigned char SetAO_Word(unsigned short iMBAddr, unsigned short *iSend)

[VB.NET/VC#.NET]

byte SetAO_Word(ushort iMBAddr, out ushort iSend)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 95

SetAO_DWord
This function can set a single analog output value to a specific modbus address

Syntax

Parameters

iMBAddr

[in] The modbus address of specific tag in the NAPOPC_CE5. The range is from 1 to

1000.

iSend

[out] The analog value of specific tag.

Return Values

 0 indicates success.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set the analog output value as 2323 to modbus address 1

SetAO_DWord(1,2323);

[VB.NET]

Quicker.QuickerIO.SetAO_DWord(1, 2323)

[VC#.NET]
Quicker.QuickerIO.SetAO_DWord(1, 2323);

[eVC++]

unsigned char SetAO_DWord(unsigned short iMBAddr, unsigned long *iSend)

[VB.NET/VC#.NET]

byte SetAO_DWord(ushort iMBAddr, out ulong iSend)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 96

4.4.1.3 Modbus Function

This group provides 8 functions to user to add their own variables into NAPOPC_CE5 for

sharing the values to modbus client via modbus service of NAPOPC_CE5. If user create

internal device and create internal tag, this data can not only be accessed by modbus client

but also OPC client via NAPOPC_CE5.

MBSetCoil
The function can set a coil value into NAPOPC_CE5.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to set into. The range of modbus address is

from 1001 to 20999.

iStatus

[in] The coil status of specific modbus address. 1 means ON. 0 means OFF.

iAttr

[in] Assign which kind of coil you want set. 1 means input coil which will be requested

by modbus function number 2. 0 means output coil which will be requested by modbus

function number 1/5/15.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

//Set input coil status ON at address 1

[eVC++]

MBSetCoil(1,1,1);

[VB.NET]

Quicker.Modbus.MBSetCoil(1, 1, 1)

[VC#.NET]

Quicker.Modbus.MBSetCoil(1, 1, 1);

[eVC++]

unsigned char MBSetCoil(unsigned short iMBAddress, unsigned char iStatus,

unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBSetCoil(ushort iMBAddress, byte iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 97

MBGetCoil
The function can get a coil value from a specific modbus address.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to get from. The range of modbus address is

from 1001 to 20999.

iStatus

[out] The coil status of specific modbus address. 1 means ON. 0 means OFF.

iAttr

[in] Assign which kind of coil you want get. 1 means input coil which will be requested

by modbus function number 2. 0 means output coil which will be requested by modbus

function number 1/5/15.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get input coil status from address 1

unsigned char iStatus;

MBGetCoil(1,&iSatus,1);

[VB.NET]

Dim m_MBGetCoilVal As Byte

Quicker.Modbus.MBGetCoil(1, m_MBGetCoilVal, 1)

[VC#.NET]

byte m_MBGetCoilVal;

Quicker.Modbus.MBGetCoil(1,out m_MBGetCoilVal, 1);

[eVC++]

unsigned char MBGetCoil(unsigned short iMBAddress, unsigned char *iStatus,

unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBGetCoil(ushort iMBAddress, out byte iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 98

MBSetReg
The function can set a register value into NAPOPC_CE5.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to set into. The range of modbus address is

from 1001 to 20999.

iStatus

[in] The register value of specific modbus address.

iAttr

[in] Assign which kind of register you want set. 1 means input register which will be

requested by modbus function number 4. 0 means output register which will be

requested by modbus function number 3/6/16.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set input register value 123 at address 1

MBSetReg(1,123,1);

[VB.NET]

Quicker.Modbus.MBSetReg(1, 123, 1)

[VC#.NET]

Quicker.Modbus.MBSetReg(1, 123, 1) ;

[eVC++]

unsigned char MBSetReg(unsigned short iMBAddress, short iStatus,

 unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBSetReg(ushort iMBAddress, short iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 99

MBGetReg
The function can get a register value from a specific modbus address.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to get from. The range of modbus address is

from 1001 to 20999.

iStatus

[out] The register value of specific modbus address.

iAttr

[in] Assign which kind of register you want get. 1 means input register which will be

requested by modbus function number 4. 0 means output register which will be

requested by modbus function number 3/6/16.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get input register value from address 1

short iSataus;

MBGetReg(1,&iSatus,1);

[VB.NET]

Dim m_MBGetRegVal As short

Quicker.Modbus.MBGetReg(1, m_MBGetRegVal, 1)

[VC#.NET]

short m_MBGetRegVal;

Quicker.Modbus.MBGeReg(1,out m_MBGetRegVal, 1);

[eVC++]

unsigned char MBGetReg(unsigned short iMBAddress, short *iStatus,

unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBGetReg(ushort iMBAddress, out short iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 100

MBSetReg_Long
The function can set a register value into NAPOPC_CE5.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to set into. The range of modbus address is

from 1001 to 20999.

iStatus

[in] The register value of specific modbus address.

iAttr

[in] Assign which kind of register you want set. 1 means input register which will be

requested by modbus function number 4. 0 means output register which will be

requested by modbus function number 3/6/16.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set input register value 123 at address 1

MBSetReg_Long(1,123,1);

[VB.NET]

Quicker.Modbus.MBSetReg_Long(1, 123, 1)

[VC#.NET]

Quicker.Modbus.MBSetReg_Long(1, 123, 1) ;

[eVC++]

unsigned char MBSetReg_Long(unsigned short iMBAddress, long iStatus,

 unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBSetReg(ushort iMBAddress, int iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 101

MBGetReg_Long
The function can get a register value from a specific modbus address.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to get from. The range of modbus address is

from 1001 to 20999.

iStatus

[out] The register value of specific modbus address.

iAttr

[in] Assign which kind of register you want get. 1 means input register which will be

requested by modbus function number 4. 0 means output register which will be

requested by modbus function number 3/6/16.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get input register value from address 1

long iSataus;

MBGetReg_Long(1,&iSatus,1);

[VB.NET]

Dim m_MBGetRegVal As Integer

Quicker.Modbus.MBGetReg_Long(1, m_MBGetRegVal, 1)

[VC#.NET]

int m_MBGetRegVal;

Quicker.Modbus.MBGeReg_Long(1,out m_MBGetRegVal, 1);

[eVC++]

unsigned char MBGetReg_Long(unsigned short iMBAddress, long *iStatus,

unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBGetReg_Long(ushort iMBAddress, out int iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 102

MBSetReg_DWord
The function can set a register value into NAPOPC_CE5.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to set into. The range of modbus address is

from 1001 to 20999.

iStatus

[in] The register value of specific modbus address.

iAttr

[in] Assign which kind of register you want set. 1 means input register which will be

requested by modbus function number 4. 0 means output register which will be

requested by modbus function number 3/6/16.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set input register value 123 at address 1

MBSetReg_DWord(1,123,1);

[VB.NET]

Quicker.Modbus.MBSetReg_DWord(1, 123, 1)

[VC#.NET]

Quicker.Modbus.MBSetReg_DWord(1, 123, 1) ;

[eVC++]

unsigned char MBSetReg_DWord(unsigned short iMBAddress, unsigned long

iStatus, unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBSetReg(ushort iMBAddress, uint iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 103

MBGetReg_DWord
The function can get a register value from a specific modbus address.

Syntax

Parameters

iMBAddress

[in] The modbus address which you want to get from. The range of modbus address is

from 1001 to 20999.

iStatus

[out] The register value of specific modbus address.

iAttr

[in] Assign which kind of register you want get. 1 means input register which will be

requested by modbus function number 4. 0 means output register which will be

requested by modbus function number 3/6/16.

Return Values

0 indicates success. WCA_MBADDR_OVER means the iMBAddress over the range.

The legal range is from number 1001 to number 20999. WCA_MBATTR_ERROR means

the iAttr is neither 1 nor 0.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get input register value from address 1

unsigned long iSataus;

MBGetReg_DWord(1,&iSatus,1);

[VB.NET]

Dim m_MBGetRegVal As UInt32

Quicker.Modbus.MBGetReg_DWord(1, m_MBGetRegVal, 1)

[VC#.NET]

uint m_MBGetRegVal;

Quicker.Modbus.MBGeReg_DWord(1,out m_MBGetRegVal, 1);

[eVC++]

unsigned char MBGetReg_DWord(unsigned short iMBAddress, unsigned long

*iStatus, unsigned char iAttr)

[VB.NET/VC#.NET]

byte MBGetReg_DWord(ushort iMBAddress, out uint iStatus, byte iAttr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 104

4.4.1.4 UserShare Function

These functions allow users to add their own variables into share memory block for sharing

the values with different application program. The data using these functions can not be

accessed by modbus client and OPC client.

UerSetCoil
The function can set an unsigned char variable into share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to set into. The range of address is from 1 to 19999.

iStatus

[in] unsigned char variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set coil value into address 1

UserSetCoil(1,1);

[VB.NET]

Quicker.UserShare.UserSetCoil(1, 1)

[VC#.NET]

Quicker.UserShare.UserSetCoil(1, 1);

[eVC++]

unsigned char UserSetCoil(unsigned short iUserAddress, unsigned char iStatus)

[VB.NET/VC#.NET]

byte UserSetCoil(ushort iUserAddress, byte iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 105

UserGetCoil
The function can get an unsigned char variable from share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to get from. The range of address is from 1 to 19999.

iStatus

[out] The pointer to an unsigned char variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Get coil value from address 1

unsigned char iStatus;

UserGetCoil(1,&iSatus);

[VB.NET]

Dim m_UserGetCoilVal As Byte

Quicker.UserShare.UserGetCoil(1, m_UserGetCoilVal)

[VC#.NET]

byte m_UserGetCoilVal;

 Quicker.UserShare.UserGetCoil(1,out m_UserGetCoilVal);

[eVC++]

unsigned char UserGetCoil(unsigned short iUserAddress, unsigned char *iStatus)

[VB.NET/VC#.NET]

byte UserGetCoil(ushort iUserAddress, out byte iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 106

UserSetReg_Str
The function can set a string variable into share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to set into. The range of address is from 1 to 1024.

iStatus

[out] char variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 1024.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Set string KKK into address 1

char *SetString;

CString m_USAValStr;

m_USAValStr = _T("KKK");

SetString = (LPSTR)(LPCTSTR)m_USAValStr;

UserSetReg_Str(1,SetString);

[VB.NET]

Dim Rtn As Byte

Dim UserSetRegStrVal As String

Rtn = Quicker.UserShare.UserSetReg_Str(1, UserSetRegStrVal.ToCharArray())

[VC#.NET]

byte Rtn;

string UserSetRegStrVal;

 Rtn = Quicker.UserShare.UserSetReg_Str(1, UserSetRegStrVal.ToCharArray());

[eVC++]

unsigned char UserSetReg_Str(unsigned short iUserAddress, char *iStatus)

[VB.NET/VC#.NET]

byte UserSetReg_Str(ushort iUserAddress, char[] cSetStr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 107

UserGetReg_Str
The function can get a string variable from share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to get from. The range of address is from 1 to 1024.

iStatus

[out] The pointer to a long variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 1024.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]

//Get string from modbus address 1

char iStatus[256];

UserGetReg_Str(1,iStatus);

[VB.NET]

Dim UserGetStr(256) As Byte

 Dim Rtn As Byte

 Rtn = Quicker.UserShare.UserGetReg_Str(1, UserGetStr)

[VC#.NET]

byte Rtn;

 byte[] UserGetStr = new byte[256];

 Rtn = Quicker.UserShare.UserGetReg_Str(1, UserGetStr);

[eVC++]

unsigned char UserGetReg_Str(unsigned short iUserAddress, char *iStatus)

[VB.NET/VC#.NET]

byte UserGetReg_Str(ushort iUserAddress, byte[] cGetStr)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 108

UserSetReg_Float
The function can set a float variable into share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to set into. The range of address is from 1 to 19999.

iStatus

[out] float variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Set register value 2.5 into address 1

UserSetReg_Float(1,2.5);

[VB.NET]

Dim Rtn As Byte

 Dim UserSetRegFloatVal As Single

 Rtn = Quicker.UserShare.UserSetReg_Float(1, UserSetRegFloatVal)

[VC#.NET]

byte Rtn;

 float RegFloat;

 Rtn = Quicker.UserShare.UserSetReg_Float(1,out RegFloat);

[eVC++]

unsigned char UserSetReg_Float(unsigned short iUserAddress, float *iStatus)

[VB.NET/VC#.NET]

byte UserSetReg_Float(ushort iUserAddress, out float iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 109

UserGetReg_Float
The function can get a float variable from share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to get from. The range of address is from 1 to 19999.

iStatus

[out] The pointer to a float variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Get register value from address 1

float iStatus;

UserGetReg_Float(1,&iSatus);

[VB.NET]

Dim Rtn As Byte

 Dim m_UserGetRegFloatVal As Single

 Rtn = Quicker.UserShare.UserGetReg_Float(1, m_UserGetRegFloatVal)

[VC#.NET]

byte Rtn;

 float m_UserGetRegFloatVal;

 Rtn = Quicker.UserShare.UserGetReg_Float(1,out m_UserGetRegFloatVal);

[eVC++]

unsigned char UserGetReg_Float(unsigned short iUserAddress, float *iStatus)

[VB.NET/VC#.NET]

byte UserGetReg_Float(ushort iUserAddress, out float iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 110

UserSetReg_Short
The function can set a short variable into share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to set into. The range of address is from 1 to 19999.

iStatus

[out] short variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Set register value 222 into address 1

UserSetReg_Short(1,222);

[VB.NET]

Dim Rtn As Byte

 Dim UserSetRegShortVal As Integer

 Rtn = Quicker.UserShare.UserSetReg_Short(1, UserSetRegShortVal)

[VC#.NET]

byte Rtn;

 int RegShort;

 Rtn = Quicker.UserShare.UserSetReg_Short(1,out RegShort);

[eVC++]

unsigned char UserSetReg_Short(unsigned short iUserAddress, short *iStatus)

[VB.NET/VC#.NET]

byte UserSetReg_short(ushort iUserAddress, out int iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 111

UserGetReg_Short
The function can get a short variable from share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to get from. The range of address is from 1 to 19999.

iStatus

[out] The pointer to a short variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Get register value from address 1

short iStatus;

UserGetReg_Short(1,&iSatus);

[VB.NET]

Dim Rtn As Byte

 Dim m_UserGetRegShortVal As Integer

 Rtn = Quicker.UserShare.UserGetReg_Short(1, m_UserGetRegShortVal)

[VC#.NET]

byte Rtn;

 short m_UserGetRegShortVal;

 Rtn = Quicker.UserShare.UserGetReg_Short(1,out m_UserGetRegShortVal);

[eVC++]

unsigned char UserGetReg_Short(unsigned short iUserAddress, short *iStatus)

[VB.NET/VC#.NET]

byte UserGetReg_Float(ushort iUserAddress, out short iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 112

UserSetReg_Long
The function can set a long variable into share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to set into. The range of address is from 1 to 19999.

iStatus

[out] long variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Set register value 112233 into address 1

UserSetReg_Long(1,112233);

[VB.NET]

Dim Rtn As Byte

 Dim UserSetRegLongVal As Integer

 Rtn = Quicker.UserShare.UserSetReg_Long(1, UserSetRegLongVal)

[VC#.NET]

byte Rtn;

 int RegLong;

 Rtn = Quicker.UserShare.UserSetReg_Long(1,out RegLong);

[eVC++]

unsigned char UserSetReg_Long(unsigned short iUserAddress, long *iStatus)

[VB.NET/VC#.NET]

byte UserSetReg_Long(ushort iUserAddress, out long iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 113

UserGetReg_Long
The function can get a long variable from share memory block.

Syntax

Parameters

iUserAddress

[in] The address which you want to get from. The range of address is from 1 to 19999.

iStatus

[out] The pointer to a long variable.

Return Values

0 indicates success. WCA_USERADDR_OVER means the iUserAddress over the

range. The legal range is from number 1 to number 19999.

Remarks

Requirements

Runs on Versions Defined in Include Link to

WinPAC 8000/5000 4.1.0.01 and later Quicker.lib WinConAgent.h

Example

[eVC++]
//Get register value from address 1

long iStatus;

UserGetReg_Long(1,&iSatus);

[VB.NET]

Dim Rtn As Byte

 Dim m_UserGetRegLongVal As Integer

 Rtn = Quicker.UserShare.UserGetReg_Long(1, m_UserGetRegLongVal)

[VC#.NET]

byte Rtn;

 int m_UserGetRegLongVal;

 Rtn = Quicker.UserShare.UserGetReg_Long(1,out m_UserGetRegLongVal);

4.4.2 Quicker API for VB.NET/VC#.NET Developer
Step 1:

 Create a smart device project
Step 2:

 [Add Reference] ->QuickerNet.dll
Step 3:

Refer to the function prototype of QuickerNet.dll by Object Browser
Step 4:

[eVC++]

unsigned char UserGetReg_Long(unsigned short iUserAddress, long *iStatus)

[VB.NET/VC#.NET]

byte UserGetReg_Long(ushort iUserAddress, out long iStatus)

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 114

 Call the functions in the QuickerNet.dll (Please refer to the
Quicker_VB.NET_Demo /Quicker_VC#.NET_Demo)

Step 5:
 Build your project and copy it and relative library into WinPAC-8000/5000

Note: Quicker.dll, QuickerNet.dll, and VB.NET/VC#.NET application program must
be copied to the same folder in the WinPAC-8000/5000

4.5 NAPOPC_CE5 with Rule Script
NAPOPC_CE5 provides “Rule Script Editor” to user for editing the rules. This

function is based on the instinctive design style to develop rule list. The program
designers can easily implement their logic via “IF…THEN…” syntax into rule list to
achieve the purpose of chain reaction control. The “Rule Script” is suitable within the
non-critical situation. Using this function can not only avoid typing error but also save
developing time.

4.5.1 Rule Script Syntax
Rule script syntax is very instinctive as well. In the “IF” area, the relation

between timer and other variables is “AND”. The triggered frequency of the rule is
decided by the timer of each rule. If the rule has timer and the “THEN” area has
“0xxxxx” variable, the “0xxxxx” variable will frequently “ON/OFF” switch like blinking
function.
Ｅx 1:

IF THEN (‘000001’ = 0.0) [Timer = ‘300’]

Which means the variable “000001” will do “ON/OFF” switch every 300ms.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 115

Ｅx 2:

IF (‘100001’ ‘==’ ‘0.000000’) and (‘400001’ ‘==’ ‘3.000000’) THEN (‘000001’ ‘=’

‘1.000000’)

Which means the variable “000001” will do “ON” when variable “100001” is “0” and
variable “400001” is “3”. For more advanced application, user can use the variable in
the “Internal device” to be a temporary buffer to chain each rule.

NAPOPC_CE5 DA Server User’s Manual

Ver: 2.30 Date: Aug-05 2011 Page: 116

Appendix A – Error list and description
Code Description I/O Unit Min Max

Code Define Description

0 WCA_OK OK

102 WCA_Stop ScanKernel has been stopped

103 WCA_SLOTNO_OVER Slot number must be 1 - 8

104 WCA_ATT_ERROR Attribute number error. It should be 1 or 0

105 WCA_COMNO_OVER COM port No. must be 2 or 3

106 WCA_SLAVENO_OVER Slave number must be 1 - 256

107 WCA_NOT_MASTER Not the main AP which calls ScanKernel

108 WCA_MBADDR_OVER Modbus DIO address must be 449 – 2048, AIO address must be

225 - 2048

109 WCA_MBATTR_ERROR Modbus attribute must be 1 or 0

110 WCA_USERADDR_OVER User defined address must be 1 - 8192

111 WCA_USERRATTR_ERROR User defined register value must be -32768 to 32767

	1 NAPOPC_CE5 DA Server
	1.1 Install NAPOPC_CE5 DA Server
	1.2 Function Overview
	1.2.1 Search Modules
	1.2.2 Monitoring Devices
	1.2.3 Adding a New Device
	1.2.3.1 Adding a New I-8K/I-87K Embedded Module
	1.2.3.2 Adding a New XW I/O Embedded Module
	1.2.3.3 Adding a New Remote I/O Module
	1.2.3.4 Adding a New Internal Device
	1.2.3.5 Adding a New FRnet Device
	1.2.3.6 Adding a New Modbus RTU Controller
	1.2.3.7 Adding a New Modbus ASCII Controller
	1.2.3.8 Adding a New Modbus TCP Controller

	1.2.4 Adding a New Group
	1.2.5 Adding a New Tag
	1.2.5.1 Adding New Tags For I-7K/8K/87K/ZigBee/FRnet/XW Module
	1.2.5.2 Adding a New Tag For Internal Device
	1.2.5.3 Adding a New Tag For Modbus Device
	1.2.5.4 Scaling Settings

	1.2.6 Adding Multi Tags for Modbus Device
	1.2.7 Read/Write the Tags
	1.2.8 Editing A Device/Group/Tag properties
	1.2.9 Deleting A Device/Group/Tag
	1.2.10 Generating Tags
	1.2.11 Services Setup
	1.2.12 Rule Script Editor
	1.2.13 File
	1.2.14 About
	1.2.15 Minimize NAPOPC_CE5

	2 Quick Start
	3 Remote Accessing
	3.1 System Requirement
	3.2 Configuring DCOM
	3.2.1 Configuring On the Server Site (WinPAC)
	3.2.2 Configuring On the Client Site (PC)
	3.2.3 Configuring On the Client Site (XPAC)
	3.2.4 Configuring On the Client Site (WinPAC)

	4 The Application of NAPOPC_CE5
	4.1 NAPOPC_CE5 with OPC Client
	4.2 NAPOPC_CE5 with Modbus RTU/TCP Client
	4.2.1 Supported Modbus Commands

	4.3 NAPOPC_CE5 with NAPOPC_ST/NAPOPC_XPE
	4.4 NAPOPC_CE5 with User Application
	4.4.1 Quicker API for eVC++ Developer
	4.4.1.1 System Function
	4.4.1.2 QuickerIO Function
	4.4.1.3 Modbus Function
	4.4.1.4 UserShare Function

	4.4.2 Quicker API for VB.NET/VC#.NET Developer

	4.5 NAPOPC_CE5 with Rule Script
	4.5.1 Rule Script Syntax

	Appendix A – Error list and description

